11,703 research outputs found

    Automatic analysis of Swift-XRT data

    Full text link
    The Swift spacecraft detects and autonomously observes ~100 Gamma Ray Bursts (GRBs) per year, ~96% of which are detected by the X-ray telescope (XRT). GRBs are accompanied by optical transients and the field of ground-based follow-up of GRBs has expanded significantly over the last few years, with rapid response instruments capable of responding to Swift triggers on timescales of minutes. To make the most efficient use of limited telescope time, follow-up astronomers need accurate positions of GRBs as soon as possible after the trigger. Additionally, information such as the X-ray light curve, is of interest when considering observing strategy. The Swift team at Leicester University have developed techniques to improve the accuracy of the GRB positions available from the XRT, and to produce science-grade X-ray light curves of GRBs. These techniques are fully automated, and are executed as soon as data are available.Comment: 4 pages, 2 figures, to appear in the proceedings of ADASS XVII (ASP Conference Series

    Implementing vertex dynamics models of cell populations in biology within a consistent computational framework

    Get PDF
    The dynamic behaviour of epithelial cell sheets plays a central role during development, growth, disease and wound healing. These processes occur as a result of cell adhesion, migration, division, differentiation and death, and involve multiple processes acting at the cellular and molecular level. Computational models offer a useful means by which to investigate and test hypotheses about these processes, and have played a key role in the study of cell–cell interactions. However, the necessarily complex nature of such models means that it is difficult to make accurate comparison between different models, since it is often impossible to distinguish between differences in behaviour that are due to the underlying model assumptions, and those due to differences in the in silico implementation of the model. In this work, an approach is described for the implementation of vertex dynamics models, a discrete approach that represents each cell by a polygon (or polyhedron) whose vertices may move in response to forces. The implementation is undertaken in a consistent manner within a single open source computational framework, Chaste, which comprises fully tested, industrial-grade software that has been developed using an agile approach. This framework allows one to easily change assumptions regarding force generation and cell rearrangement processes within these models. The versatility and generality of this framework is illustrated using a number of biological examples. In each case we provide full details of all technical aspects of our model implementations, and in some cases provide extensions to make the models more generally applicable

    Antiphase dynamics in a multimode semiconductor laser with optical injection

    Get PDF
    A detailed experimental study of antiphase dynamics in a two-mode semiconductor laser with optical injection is presented. The device is a specially designed Fabry-Perot laser that supports two primary modes with a THz frequency spacing. Injection in one of the primary modes of the device leads to a rich variety of single and two-mode dynamical scenarios, which are reproduced with remarkable accuracy by a four dimensional rate equation model. Numerical bifurcation analysis reveals the importance of torus bifurcations in mediating transitions to antiphase dynamics and of saddle-node of limit cycle bifurcations in switching of the dynamics between single and two-mode regimes.Comment: 7 pages, 9 figure

    Freak Waves in Random Oceanic Sea States

    Full text link
    Freak waves are very large, rare events in a random ocean wave train. Here we study the numerical generation of freak waves in a random sea state characterized by the JONSWAP power spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schroedinger (NLS) equation. We identify two parameters in the power spectrum that control the nonlinear dynamics: the Phillips parameter α\alpha and the enhancement coefficient γ\gamma. We discuss how freak waves in a random sea state are more likely to occur for large values of α\alpha and γ\gamma. Our results are supported by extensive numerical simulations of the NLS equation with random initial conditions. Comparison with linear simulations are also reported.Comment: 7 pages, 6 figures, to be published in Phys. Rev. Let

    The ground state of a class of noncritical 1D quantum spin systems can be approximated efficiently

    Full text link
    We study families H_n of 1D quantum spin systems, where n is the number of spins, which have a spectral gap \Delta E between the ground-state and first-excited state energy that scales, asymptotically, as a constant in n. We show that if the ground state |\Omega_m> of the hamiltonian H_m on m spins, where m is an O(1) constant, is locally the same as the ground state |\Omega_n>, for arbitrarily large n, then an arbitrarily good approximation to the ground state of H_n can be stored efficiently for all n. We formulate a conjecture that, if true, would imply our result applies to all noncritical 1D spin systems. We also include an appendix on quasi-adiabatic evolutions.Comment: 9 pages, 1 eps figure, minor change

    X-ray and UV observations of V751 Cyg in an optical high state

    Full text link
    Aims: The VY Scl system (anti-dwarf nova) V751 Cyg is examined following a claim of a super-soft spectrum in the optical low state. Methods: A serendipitous XMM-Newton X-ray observation and, 21 months later, Swift X-ray and UV observations, have provided the best such data on this source so far. These optical high-state datasets are used to study the flux and spectral variability of V751 Cyg. Results: Both the XMM-Newton and Swift data show evidence for modulation of the X-rays for the first time at the known 3.467 hr orbital period of V751 Cyg. In two Swift observations, taken ten days apart, the mean X-ray flux remained unchanged, while the UV source brightened by half a magnitude. The X-ray spectrum was not super-soft during the optical high state, but rather due to multi-temperature optically thin emission, with significant (10^{21-22} cm^-2) absorption, which was higher in the observation by Swift than that of XMM-Newton. The X-ray flux is harder at orbital minimum, suggesting that the modulation is related to absorption, perhaps linked to the azimuthally asymmetric wind absorption seen previously in H-alpha.Comment: 6 pages, 9 figures, accepted for publication in A&

    The serendipituous discovery of a short-period eclipsing polar in 2XMMp

    Full text link
    We report the serendipituous discovery of the new eclipsing polar 2XMMp J131223.4+173659. Its striking X-ray light curve attracted immediate interest when we were visually inspecting the source products of the 2XMMp catalogue. This light curve revealed its likely nature as a magnetic cataclysmic variable of AM Herculis (or polar) type with an orbital period of ~92 min, which was confirmed by follow-up optical spectroscopy and photometry. 2XMMp J131223.4+173659 probably has a one-pole accretion geometry. It joins the group of now nine objects that show no evidence of a soft component in their X-ray spectra despite being in a high accretion state, thus escaping ROSAT/EUVE detection. We discuss the likely accretion scenario, the system parameters, and the spectral energy distribution.Comment: Accepted for publication in A&

    Defending against Sybil Devices in Crowdsourced Mapping Services

    Full text link
    Real-time crowdsourced maps such as Waze provide timely updates on traffic, congestion, accidents and points of interest. In this paper, we demonstrate how lack of strong location authentication allows creation of software-based {\em Sybil devices} that expose crowdsourced map systems to a variety of security and privacy attacks. Our experiments show that a single Sybil device with limited resources can cause havoc on Waze, reporting false congestion and accidents and automatically rerouting user traffic. More importantly, we describe techniques to generate Sybil devices at scale, creating armies of virtual vehicles capable of remotely tracking precise movements for large user populations while avoiding detection. We propose a new approach to defend against Sybil devices based on {\em co-location edges}, authenticated records that attest to the one-time physical co-location of a pair of devices. Over time, co-location edges combine to form large {\em proximity graphs} that attest to physical interactions between devices, allowing scalable detection of virtual vehicles. We demonstrate the efficacy of this approach using large-scale simulations, and discuss how they can be used to dramatically reduce the impact of attacks against crowdsourced mapping services.Comment: Measure and integratio

    Simulating adiabatic evolution of gapped spin systems

    Full text link
    We show that adiabatic evolution of a low-dimensional lattice of quantum spins with a spectral gap can be simulated efficiently. In particular, we show that as long as the spectral gap \Delta E between the ground state and the first excited state is any constant independent of n, the total number of spins, then the ground-state expectation values of local operators, such as correlation functions, can be computed using polynomial space and time resources. Our results also imply that the local ground-state properties of any two spin models in the same quantum phase can be efficiently obtained from each other. A consequence of these results is that adiabatic quantum algorithms can be simulated efficiently if the spectral gap doesn't scale with n. The simulation method we describe takes place in the Heisenberg picture and does not make use of the finitely correlated state/matrix product state formalism.Comment: 13 pages, 2 figures, minor change

    Timing accuracy of the Swift X-Ray Telescope in WT mode

    Full text link
    The X-Ray Telescope (XRT) on board Swift was mainly designed to provide detailed position, timing and spectroscopic information on Gamma-Ray Burst (GRB) afterglows. During the mission lifetime the fraction of observing time allocated to other types of source has been steadily increased. In this paper, we report on the results of the in-flight calibration of the timing capabilities of the XRT in Windowed Timing read-out mode. We use observations of the Crab pulsar to evaluate the accuracy of the pulse period determination by comparing the values obtained by the XRT timing analysis with the values derived from radio monitoring. We also check the absolute time reconstruction measuring the phase position of the main peak in the Crab profile and comparing it both with the value reported in literature and with the result that we obtain from a simultaneous Rossi X-Ray Timing Explorer (RXTE) observation. We find that the accuracy in period determination for the Crab pulsar is of the order of a few picoseconds for the observation with the largest data time span. The absolute time reconstruction, measured using the position of the Crab main peak, shows that the main peak anticipates the phase of the position reported in literature for RXTE by ~270 microseconds on average (~150 microseconds when data are reduced with the attitude file corrected with the UVOT data). The analysis of the simultaneous Swift-XRT and RXTE Proportional Counter Array (PCA) observations confirms that the XRT Crab profile leads the PCA profile by ~200 microseconds. The analysis of XRT Photodiode mode data and BAT event data shows a main peak position in good agreement with the RXTE, suggesting the discrepancy observed in XRT data in Windowed Timing mode is likely due to a systematic offset in the time assignment for this XRT read out mode.Comment: 6 pages, 4 figures. Accepted for publication on Astronomy&Astrophysic
    • …
    corecore