The Swift spacecraft detects and autonomously observes ~100 Gamma Ray Bursts
(GRBs) per year, ~96% of which are detected by the X-ray telescope (XRT). GRBs
are accompanied by optical transients and the field of ground-based follow-up
of GRBs has expanded significantly over the last few years, with rapid response
instruments capable of responding to Swift triggers on timescales of minutes.
To make the most efficient use of limited telescope time, follow-up astronomers
need accurate positions of GRBs as soon as possible after the trigger.
Additionally, information such as the X-ray light curve, is of interest when
considering observing strategy. The Swift team at Leicester University have
developed techniques to improve the accuracy of the GRB positions available
from the XRT, and to produce science-grade X-ray light curves of GRBs. These
techniques are fully automated, and are executed as soon as data are available.Comment: 4 pages, 2 figures, to appear in the proceedings of ADASS XVII (ASP
Conference Series