13,189 research outputs found

    Increased human pathogenic potential of Escherichia coli from polymicrobial urinary tract infections in comparison to isolates from monomicrobial culture samples

    Get PDF
    The current diagnostic standard procedure outlined by the Health Protection Agency for urinary tract infections (UTIs) in clinical laboratories does not report bacteria isolated from samples containing three or more different bacterial species. As a result many UTIs go unreported and untreated, particularly in elderly patients, where polymicrobial UTI samples are especially prevalent. This study reports the presence of the major uropathogenic species in mixed culture urine samples from elderly patients, and of resistance to front-line antibiotics, with potentially increased levels of resistance to ciprofloxacin and trimethoprim. Most importantly, the study highlights that Escherichia coli present in polymicrobial UTI samples are statistically more invasive (P<0.001) in in vitro epithelial cell infection assays than those isolated from monomicrobial culture samples. In summary, the results of this study suggest that the current diagnostic standard procedure for polymicrobial UTI samples needs to be reassessed, and that E. coli present in polymicrobial UTI samples may pose an increased risk to human health

    Counterions at Charged Cylinders: Criticality and universality beyond mean-field

    Full text link
    The counterion-condensation transition at charged cylinders is studied using Monte-Carlo simulation methods. Employing logarithmically rescaled radial coordinates, large system sizes are tractable and the critical behavior is determined by a combined finite-size and finite-ion-number analysis. Critical counterion localization exponents are introduced and found to be in accord with mean-field theory both in 2 and 3 dimensions. In 3D the heat capacity shows a universal jump at the transition, while in 2D, it consists of discrete peaks where single counterions successively condense.Comment: 4 pages, 3 figures; submitted to Phys. Rev. Lett. (2005

    Gene loss and lineage specific restriction-modification systems associated with niche differentiation in the Campylobacter jejuni Sequence Type 403 clonal complex

    Get PDF
    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation

    Scaling and Universality in the Counterion-Condensation Transition at Charged Cylinders

    Full text link
    We address the critical and universal aspects of counterion-condensation transition at a single charged cylinder in both two and three spatial dimensions using numerical and analytical methods. By introducing a novel Monte-Carlo sampling method in logarithmic radial scale, we are able to numerically simulate the critical limit of infinite system size (corresponding to infinite-dilution limit) within tractable equilibration times. The critical exponents are determined for the inverse moments of the counterionic density profile (which play the role of the order parameters and represent the inverse localization length of counterions) both within mean-field theory and within Monte-Carlo simulations. In three dimensions (3D), correlation effects (neglected within mean-field theory) lead to an excessive accumulation of counterions near the charged cylinder below the critical temperature (condensation phase), while surprisingly, the critical region exhibits universal critical exponents in accord with the mean-field theory. In two dimensions (2D), we demonstrate, using both numerical and analytical approaches, that the mean-field theory becomes exact at all temperatures (Manning parameters), when number of counterions tends to infinity. For finite particle number, however, the 2D problem displays a series of peculiar singular points (with diverging heat capacity), which reflect successive de-localization events of individual counterions from the central cylinder. In both 2D and 3D, the heat capacity shows a universal jump at the critical point, and the energy develops a pronounced peak. The asymptotic behavior of the energy peak location is used to locate the critical temperature, which is also found to be universal and in accordance with the mean-field prediction.Comment: 31 pages, 16 figure

    Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses

    Get PDF
    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles which readily permit variation of sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in packing fraction. The experimental results suggest that low-frequency quasi-localized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system

    Mass-to-Radius Ratio for the Millisecond Pulsar J0437-4715

    Get PDF
    Properties of X-ray radiation emitted from the polar caps of a radio pulsar depend not only on the cap temperature, size, and position, but also on the surface chemical composition, magnetic field, and neutron star's mass and radius. Fitting the spectra and the light curves with neutron star atmosphere models enables one to infer these parameters. As an example, we present here results obtained from the analysis of the pulsed X-ray radiation of a nearby millisecond pulsar J0437-4715. In particular, we show that stringent constraints on the mass-to-radius ratio can be obtained if orientations of the magnetic and rotation axes are known, e.g., from the radio polarization data.Comment: 2 figures, aasms4.sty; accepted for publication in ApJLetter

    A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland

    Get PDF
    Continuous high-frequency in situ measurements of a range of non-methane hydrocarbons have been made at Mace Head since January 2005. Mace Head is a background Northern Hemispheric site situated on the eastern edge of the Atlantic. Five year measurements (2005–2009) of six C&lt;sub&gt;2&lt;/sub&gt;–C&lt;sub&gt;5&lt;/sub&gt; non-methane hydrocarbons have been separated into baseline Northern Hemispheric and European polluted air masses, among other sectors. Seasonal cycles in baseline Northern Hemispheric air masses and European polluted air masses arriving at Mace Head have been studied. Baseline air masses show a broad summer minima between June and September for shorter lived species, longer lived species show summer minima in July/August. All species displayed a winter maxima in February. European air masses showed baseline elevated mole fractions for all non-methane hydrocarbons. Largest elevations (of up to 360 ppt for ethane maxima) from baseline data were observed in winter maxima, with smaller elevations observed during the summer. Analysis of temporal trends using the Mann-Kendall test showed small (&lt;6 % yr&lt;sup&gt;&amp;minus;1&lt;/sup&gt;) but statistically significant decreases in the butanes and &lt;i&gt;i&lt;/i&gt;-pentane between 2005 and 2009 in European air. No significant trends were found for any species in baseline air

    AskIT to Learn

    Get PDF
    corecore