We investigate correlations between low-frequency vibrational modes and
rearrangements in two-dimensional colloidal glasses composed of thermosensitive
microgel particles which readily permit variation of sample packing fraction.
At each packing fraction, the particle displacement covariance matrix is
measured and used to extract the vibrational spectrum of the "shadow" colloidal
glass (i.e., the particle network with the same geometry and interactions as
the sample colloid but absent damping). Rearrangements are induced by
successive, small reductions in packing fraction. The experimental results
suggest that low-frequency quasi-localized phonon modes in colloidal glasses,
i.e., modes that present low energy barriers for system rearrangements, are
spatially correlated with rearrangements in this thermal system