500 research outputs found
Left-right symmetry in 5D and neutrino mass in TeV scale gravity models
We construct a left-right symmetric model based on the gauge group
in five dimensions where both the
gauge bosons and fermions reside in all five dimensions. The orbifold boundary
conditions are used not only to break the gauge symmetry down to but also to ``project'' the right handed neutrino out
of the zero mode part of the spectrum, providing a new way to understand the
small neutrino masses without adding (singlet) bulk neutrinos. This formulation
of the left-right model has also two new features: (i) it avoids most existing
phenomenological bounds on the scale of the right handed boson allowing
for the possibility that the right handed gauge bosons could have masses under
a TeV, and (ii) it predicts a stable lepton with mass of order of the inverse
radius of the fifth dimension.Comment: 20 pages; some new materials and references adde
Heavy quark supermultiplet excitations
Lorentz covariant wave functions for meson and baryon supermultiplets are
simply derived by boosting representations corresponding to
multiquark systems at rest.Comment: 12 pages (Revtex), UTAS-PHYS-93-4
Laboratory Astrophysics and Collimated Stellar Outflows: The Production of Radiatively Cooled Hypersonic Plasma Jets
We present first results of astrophysically relevant experiments where highly
supersonic plasma jets are generated via conically convergent flows. The
convergent flows are created by electrodynamic acceleration of plasma in a
conical array of fine metallic wires (a modification of the wire array
Z-pinch). Stagnation of plasma flow on the axis of symmetry forms a standing
conical shock effectively collimating the flow in the axial direction. This
scenario is essentially similar to that discussed by Canto\' ~and collaborators
as a purely hydrodynamic mechanism for jet formation in astrophysical systems.
Experiments using different materials (Al, Fe and W) show that a highly
supersonic (), well-collimated jet is generated when the radiative
cooling rate of the plasma is significant. We discuss scaling issues for the
experiments and their potential use for numerical code verification. The
experiments also may allow direct exploration of astrophysically relevant
issues such as collimation, stability and jet-cloud interactions.Comment: 13 Pages, (inc 4 figs), LaTex, Submitted to ApJ Let
Strong-weak CP hierarchy from non-renormalization theorems
We point out that the hierarchy between the measured values of the CKM phase
and the strong CP phase has a natural origin in supersymmetry with spontaneous
CP violation and low energy supersymmetry breaking. The underlying reason is
simple and elegant: in supersymmetry the strong CP phase is protected by an
exact non-renormalization theorem while the CKM phase is not. We present
explicit examples of models which exploit this fact and discuss corrections to
the non-renormalization theorem in the presence of supersymmetry breaking. This
framework for solving the strong CP problem has generic predictions for the
superpartner spectrum, for CP and flavor violation, and predicts a preferred
range of values for electric dipole moments.Comment: 36 pages, 3 figure
Current advances on TalbotâLau x-ray imaging diagnostics for high energy density experiments (invited)
ProducciĂłn CientĂficaTalbotâLau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The TalbotâLau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (ÎΞ/Ξ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014â1015 W/cm2. Laser pulse length (âŒ10 to 80 ps) and backlighter target configurations were explored in the context of MoirĂ© fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 ÎŒm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of âŒ60 ÎŒm diameter surrounded by low-density material of âŒ40 ÎŒm thickness with an outer diameter ratio of âŒ2.3. Attenuation at 8 keV was measured at âŒ20% for the dense core and âŒ10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD
A quantitative approach for measuring the reservoir of latent HIV-1 proviruses.
A stable latent reservoir for HIV-1 in resting CD4+ T cells is the principal barrier to a cure1-3. Curative strategies that target the reservoir are being tested4,5 and require accurate, scalable reservoir assays. The reservoir was defined with quantitative viral outgrowth assays for cells that release infectious virus after one round of T cell activation1. However, these quantitative outgrowth assays and newer assays for cells that produce viral RNA after activation6 may underestimate the reservoir size because one round of activation does not induce all proviruses7. Many studies rely on simple assays based on polymerase chain reaction to detect proviral DNA regardless of transcriptional status, but the clinical relevance of these assays is unclear, as the vast majority of proviruses are defective7-9. Here we describe a more accurate method of measuring the HIV-1 reservoir that separately quantifies intact and defective proviruses. We show that the dynamics of cells that carry intact and defective proviruses are different in vitro and in vivo. These findings have implications for targeting the intact proviruses that are a barrier to curing HIV infection
Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells.
Dithiocarbamates (DTCs) have recently been reported as powerful inhibitors of NF-kappaB activation in a number of cell types. Given the role of this transcription factor in the regulation of gene expression in the inflammatory response, NF-kappaB inhibitors have been suggested as potential therapeutic drugs for inflammatory diseases. We show here that DTCs inhibited both interleukin 2 (IL-2) synthesis and membrane expression of antigens which are induced during T-cell activation. This inhibition, which occurred with a parallel activation of c-Jun transactivating functions and expression, was reflected by transfection experiments at the IL-2 promoter level, and involved not only the inhibition of NF-kappaB-driven reporter activation but also that of nuclear factor of activated T cells (NFAT). Accordingly, electrophoretic mobility shift assays (EMSAs) indicated that pyrrolidine DTC (PDTC) prevented NF-kappaB, and NFAT DNA-binding activity in T cells stimulated with either phorbol myristate acetate plus ionophore or antibodies against the CD3-T-cell receptor complex and simultaneously activated the binding of AP-1. Furthermore, PDTC differentially targeted both NFATp and NFATc family members, inhibiting the transactivation functions of NFATp and mRNA induction of NFATc. Strikingly, Western blotting and immunocytochemical experiments indicated that PDTC promoted a transient and rapid shuttling of NFATp and NFATc, leading to their accelerated export from the nucleus of activated T cells. We propose that the activation of an NFAT kinase by PDTC could be responsible for the rapid shuttling of the NFAT, therefore transiently converting the sustained transactivation of this transcription factor that occurs during lymphocyte activation, and show that c-Jun NH2-terminal kinase (JNK) can act by directly phosphorylating NFATp. In addition, the combined inhibitory effects on NFAT and NF-KB support a potential use of DTCs as immunosuppressants
Higgs Mass Bounds Separate Models of Electroweak Symmetry Breaking
Vacuum stability implies a lower limit on the mass of the higgs boson in the
Standard Model (SM). In contrast, an upper limit on the lightest higgs mass can
be calculated in supersymmetric (susy) models. The main uncertainty in each
limit is the value of the top mass, which may now be fixed by the recent CDF
result. We study the possibility that these bounds do not overlap, and find
that (i) a mass gap emerges at GeV between the SM and the Minimal
Susy Standard Model (MSSM); and between the SM and the Minimal plus Singlet
Susy Model [(M+1)SSM] if the independent scalar self--coupling of the latter is
perturbatively small or if the parameter is large; this gap widens
with increasing ; (ii) there is no overlap between the SM and the MSSM
bounds at even smaller values of for the value (--2)
preferred in Supersymmetric Grand Unified Theories. Thus, if the new top mass
measurement remains valid, a measurement of the first higgs mass will serve to
exclude either the SM or MSSM/(M+1)SSM higgs sectors. In addition, we discuss
the upper bound on the lightest higgs mass in susy models with an extended
higgs sector, and in models with a strongly interacting higgs sector. Finally,
we comment on the discovery potential for the lightest higgses in these models.Comment: 18 pages, 5 figures, VAND-TH-94-1
Gauged Flavor Group with Left-Right Symmetry
We construct an anomaly-free extension of the left-right symmetric model,
where the maximal flavor group is gauged and anomaly cancellation is guaranteed
by adding new vectorlike fermion states. We address the question of the lowest
allowed flavor symmetry scale consistent with data. Because of the mechanism
recently pointed out by Grinstein et al. tree-level flavor changing neutral
currents turn out to play a very weak constraining role. The same occurs, in
our model, for electroweak precision observables. The main constraint turns out
to come from WR-mediated flavor changing neutral current box diagrams,
primarily K - Kbar mixing. In the case where discrete parity symmetry is
present at the TeV scale, this constraint implies lower bounds on the mass of
vectorlike fermions and flavor bosons of 5 and 10 TeV respectively. However,
these limits are weakened under the condition that only SU(2)_R x U(1)_{B-L} is
restored at the TeV scale, but not parity. For example, assuming the SU(2)
gauge couplings in the ratio gR/gL approx 0.7 allows the above limits to go
down by half for both vectorlike fermions and flavor bosons. Our model provides
a framework for accommodating neutrino masses and, in the parity symmetric
case, provides a solution to the strong CP problem. The bound on the lepton
flavor gauging scale is somewhat stronger, because of Big Bang Nucleosynthesis
constraints. We argue, however, that the applicability of these constraints
depends on the mechanism at work for the generation of neutrino masses.Comment: 1+23 pages, 1 table, 5 figures. v3: some more textual fixes (main
change: discussion of Lepton Flavor Violating observables rephrased). Matches
journal versio
- âŠ