29,899 research outputs found

    One-dimensional relativistic dissipative system with constant force and its quantization

    Full text link
    For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltoninan of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization of the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.Comment: 11 pages, no figure

    On algebraic classification of quasi-exactly solvable matrix models

    Get PDF
    We suggest a generalization of the Lie algebraic approach for constructing quasi-exactly solvable one-dimensional Schroedinger equations which is due to Shifman and Turbiner in order to include into consideration matrix models. This generalization is based on representations of Lie algebras by first-order matrix differential operators. We have classified inequivalent representations of the Lie algebras of the dimension up to three by first-order matrix differential operators in one variable. Next we describe invariant finite-dimensional subspaces of the representation spaces of the one-, two-dimensional Lie algebras and of the algebra sl(2,R). These results enable constructing multi-parameter families of first- and second-order quasi-exactly solvable models. In particular, we have obtained two classes of quasi-exactly solvable matrix Schroedinger equations.Comment: LaTeX-file, 16 pages, submitted to J.Phys.A: Math.Ge

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    One pion production in neutrino-nucleon scattering and the different parametrizations of the weak NΔN\rightarrow\Delta vertex

    Get PDF
    The NΔN \to \Delta weak vertex provides an important contribution to the one pion production in neutrino-nucleon and neutrino-nucleus scattering for πN\pi N invariant masses below 1.4 GeV. Beyond its interest as a tool in neutrino detection and their background analyses, one pion production in neutrino-nucleon scattering is useful to test predictions based on the quark model and other internal symmetries of strong interactions. Here we try to establish a connection between two commonly used parametrizations of the weak NΔN \to \Delta vertex and form factors (FF) and we study their effects on the determination of the axial coupling C5A(0)C_5^A(0), the common normalization of the axial FF, which is predicted to hold 1.2 by using the PCAC hypothesis. Predictions for the νμpμpπ+\nu_{\mu} p \to \mu^- p\pi^+ total cross sections within the two approaches, which include the resonant Δ++\Delta^{++} and other background contributions in a coherent way, are compared to experimental data.Comment: Submitted to Physics Letters

    Velocity quantization approach of the one-dimensional dissipative harmonic oscillator

    Full text link
    Given a constant of motion for the one-dimensional harmonic oscillator with linear dissipation in the velocity, the problem to get the Hamiltonian for this system is pointed out, and the quantization up to second order in the perturbation approach is used to determine the modification on the eigenvalues when dissipation is taken into consideration. This quantization is realized using the constant of motion instead of the Hamiltonian.Comment: 10 pages, 2 figure
    corecore