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The N → Δ weak vertex provides an important contribution to the one pion production in neutrino–
nucleon and neutrino–nucleus scattering for π N invariant masses below 1.4 GeV. Beyond its interest as
a tool in neutrino detection and their background analyses, one pion production in neutrino–nucleon
scattering is useful to test predictions based on the quark model and other internal symmetries of strong
interactions. Here we try to establish a connection between two commonly used parameterizations of
the weak N → Δ vertex and form factors (FF) and we study their effects on the determination of the
axial coupling C A

5 (0), the common normalization of the axial FF, which is predicted to hold 1.2 by using
the PCAC hypothesis. Predictions for the νμ p → μ− pπ+ total cross sections within the two approaches,
which include the resonant Δ++ and other background contributions in a coherent way, are compared
to experimental data.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
Neutrino oscillation experiments search a distortion in the neu-
trino flux at a detector positioned far away (L) from the source.
The comparison of near and far neutrino energy spectra, leads
to information about the oscillation probability P (νi → ν j) =
sin2 2θi j sin2 Δm2

i, j L

2Eν
, and then about the θi j mixing angles and

Δm2
i, j mass squared differences. Currently, new high quality data

are available from MiniBoone [1], SciBoone [2] and new data are
expected from Minerva [3] experiment, which is fully devoted to
cross sections measurements of neutrino–nucleus interactions.

The charged current quasielastic scattering (CCQE) νln → l− p
reaction, with the nucleon bounded in the nucleus target, is usu-
ally used as signal event. Although the neutrino energy is not di-
rectly measurable, it can be reconstructed from the reaction prod-
ucts through two body kinematics (exact only for free nucleons).
However, competition with other processes could lead to a possi-
ble misidentification of the arriving neutrinos. In fact:

• Disappearance searching experiments νμ → νx (like SciBoone)
use νμn → μ− p CCQE reaction to detect an arriving neutrino
and reconstruct its energy. However, the determination of the
neutrino energy Eν could be wrong due to a fraction of back-
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ground events νμp → μ− pπ+ (CC 1π+) that can mimic a
CCQE signal if the pion is absorbed in the target and/or is not
detected.

• In νμ → νe appearance experiments (like MiniBooNE) one de-
tects νe in an (almost) pure νμ beam. The neutral current
reaction νμN → νμNπ0, N = n, p (NC 1π0) can become a
source of background for the signal event νen → e− p when
one of the photons in the π0 → γ γ decay escapes detec-
tion leading to a misidentification of the electron and neutral
pion [4].

Therefore, a precise knowledge of the cross sections of these ele-
mentary1 1π processes in charged (CC) and neutral current (NC)
neutrino–nucleon scattering is a prerequisite for the proper inter-
pretation of the experimental data. This will allow to make simu-
lations in event generators to eliminate fake events coming from
1π processes to get more realistic countings of quasielastic (QE)
events. We will focus in this work on the CC 1π production, which
is the channel that enables to fit the axial form factor of our inter-
est.

Several models have been developed over the last thirty years
to evaluate the corresponding elementary cross sections [5–14].
The scattering amplitude in all these models always contains a res-
onant term (R) in the π N system, described by the Δ(1232)-pole

1 We refer to neutrino–nucleon scattering as the elementary process that under-
lies neutrino–nucleus scattering.
e.
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Fig. 1. Background ((a)–(g)) and resonant (h) contributions to the scattering ampli-
tude.

contribution in Fig. 1(h) and (in some cases) by higher mass inter-
mediate resonances, plus a background (B) term describing other
processes, as shown in Fig. 1(a)–(f) (the cross-Δ contribution in
Fig. 1(g) can also be included in this background) leading to π N
final states. Therefore, the scattering amplitude can be written as:
M = MB +MR . Since we are including only the Δ(1232) as the
main resonance contribution, we will compare with data by apply-
ing a cut in the π N invariant energies at 1.4 GeV.

The difference between all these models stem mainly from the
treatment of the vertexes and the propagator used to describe
the Δ resonance and from the consideration (or not) of the back-
ground and its interference with the resonant contribution. In or-
der to compare the Δ baryon contribution (both to B and R ampli-
tudes) between different approaches we need to carefully analyze
both, the Δ propagator and the π NΔ and W NΔ vertexes. The
propagator can be written as [15]

Gαβ(pΔ) = /pΔ + mΔ

p2
Δ − m2

Δ

{
−gαβ + 1

3
γαγβ + 2

3m2
Δ

pΔαpΔβ

− 1

3mΔ

(pΔαγβ − γαpβ)

− b(/p − mΔ)

3m2
Δ

[
γαpΔβ − (b − 1)γβpΔα

+
(

b

2
/pΔ + (b − 1)mΔ

)
γαγβ

]}
, (1)

with the parameter b = A+1
2A+1 , where A is an arbitrary parameter

related with the contact transformations upon the Δ field. Since
the physical amplitude should be independent of A, the strong
and weak vertexes involving the Δ in Fig. 1(h) should also de-
pend on the A-parameter in order to cancel the A-dependence
of the corresponding amplitude. In this case both the π NΔ and
W NΔ vertexes should fulfill these requirements and thus a set
of A-independent reduced Feynman rules can be obtained [15].
Equivalently, one may choose a common value for A in the Feyn-
man rules involving the Δ particle to built the amplitude. In
Ref. [9] the value A = −1/3 was assumed, coinciding the rules
with those in Ref. [15]. However, a common mistake is to use the
value A = −1/3 which simplifies the vertices simultaneously with
A = −1, which simplifies the propagator. This procedure is incon-
sistent, leading to non-physical expression for the amplitude.

The vector FF’s entering the W NΔ vertex can be fixed from
the electromagnetic γ NΔ process by assuming the CVC hypoth-
esis. No analogous symmetry allows to fix the axial-vector FF’s.
Among the axial FF’s, the most relevant role is played by C A

5 (0) or,
equivalently, D1(0) = √

3C A
5 (0), depending on the assumed form

for the axial vertex at zero momentum transfer. A reference value
is provided by the PCAC hypothesis being C A

5 (0) = 1.2 [16]. The
value C A

5 (0) ∼ 1 [6] is obtained within quark models (QM); how-
ever, it is well known that it corresponds to a ‘bare’ estimate that
should be dressed by the pion cloud contribution. This dressing
can be done dynamically as in [7] where the QM value is enlarged
around 35%, or in an effective way by fitting the experimental
data for the νp → μ− pπ+ differential cross section [6]. Data on
weak pion production on nucleons are scarce and not much precise
being the most used those obtained by experiments at Argonne
National Laboratory (ANL) [17] and/or Brookhaven National Labo-
ratory (BNL) [18]. The different values assumed or obtained are:
C A

5 (0) = 1.20 [5], 1.38 [6,7], 0.867 [8,11], 1.35 [9,10], 1.17 [12,13],
1.00 [14]. These different yields depend upon the treatment of the
Δ(R + B) contributions to the amplitude as modeled by differ-
ent authors. For example in Ref. [5] the total amplitude is built
at tree level by using a complex pole only in the denominator of
the Δ propagator, which is inconsistent with the choice of the
W or π NΔ vertexes, as it was mentioned above; at the same
time, the contributions of Figs. 1(d)–1(g) were not included in the
background. In Ref. [7] the inclusion of pion cloud dynamical ef-
fects (PCE) is achieved through a T-matrix approach and all terms
are included in the B amplitude, but the same vertex-propagator
consistency problems for the Δ are present. In Refs. [8,11,14] the
model of Ref. [5] is extended by adding terms in the B amplitude
guided by the effective SU(2) σ -model Lagrangian, but consistency
problems (A = −1/3 in the vertexes and A = −1 for the propa-
gator) persist; a value for C A

5 (0) close to the QM and below the
PCAC one is obtained in this case. In Refs. [9,10] the problem of
consistency of the Δ vertex-propagator is solved together with the
question of including the Δ finite width effects, and the value ob-
tained for C A

5 (0) is close to the one corresponding to PCE dressed
effects. Finally, in Refs. [12,13], where the production and decay of
the Δ resonance are separated in the amplitude, a value close to
PCAC is obtained.

Apart from the consistency problems in treating the Δ res-
onance, the treatment of the Δ instability (constant or energy-
dependent width) and the adopted convention for the FF’s, the
above mentioned models only differ in the way the W NΔ ver-
tex is parameterized. In view of the different values obtained for
C A

5 (0), it would be important to compare these parameterizations.
Let us consider here the amplitude for the elementary neutrino–
nucleon CC 1π production process (νp → μ− pπ+ , νn → μ−nπ+ ,
νn → μ− pπ0). From our Ref. [9], hereafter called BLM, we have
the total amplitude

Mi = − G F V ud√
2

ū(pμ)γλ(1 − γ5)u(pν)ū
(
p′)Oλ

i

(
p,p′,q

)
u(p),

i = B, R (2)

with G F = 1.16637 × 10−5 GeV−2, |V ud| = 0.9740 (p, pν , pμ , k, p′)
being the set of 4-momenta of the initial nucleon, neutrino, muon,
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pion and final nucleon, respectively, and q = pμ − pν (Q 2 ≡ −q2)
being the momentum transferred from leptons to hadrons. We
adopt here the metric and conventions of Bjorken and Drell (BD)
[19] and for the hadronic currents Jλ

i a vector-axial structure
( Jλ

i ≡ V λ
i − Aλ

i ). By assuming the CVC hypothesis in the vector
sector, the axial FF at Q 2 = 0 can be fixed from the fit to the
d〈σ 〉/dQ 2 differential cross sections; the strong and other weak
couplings involved in Oλ

B(p,p′,q) and Oλ
R(p,p′,q) are those of the

BLM approach. Here we introduce the unstable character of the Δ

by through the complex mass scheme (CMS) [20] consisting in the
replacement mΔ → mΔ − iΓΔ/2 everywhere the Δ mass appears
in the propagator, with ΓΔ a constant. This procedure avoids the
inclusion of ad-hoc corrections to the vertices in order to restore
gauge invariance (which occurs if the CMS is adopted only for the
denominator of the propagator) in processes where a photon is ra-
diated from the Δ resonance [15].

Next, we compare the W NΔ vertex, defined below as Wνμ ≡
WV

νμ + W A
νμ , in different prescriptions. Previously, in BLM and [7,

10,21–23] a covariant multipole decomposition analogous to the
Sachs choice [24] of nucleon FF for WV was adopted, namely2:

WV
νμ(pΔ,q,p) = √

2
[(

G M
(

Q 2) − G E
(

Q 2))K M
νμ

+ G E
(

Q 2)K E
νμ + GC

(
Q 2)K C

νμ

]
. (3)

The Q 2-dependence of FF is assumed to be of the form given
in Ref. [7], Gi(Q 2) = Gi(0)(1 + Q 2/M2

V )−2(1 + aQ 2)e−bQ 2 ≡
Gi(0)G V (Q 2) with MV = 0.82 GeV, a = 0.154/(GeV/c)2, b =
0.166/(GeV/c)2. The Lorentz tensor structures are:

K M
νμ = −K M(

Q 2)ενμαβ

(p + pΔ)

2

α

qβ,

K E
νμ = 4

(mΔ − mN)2 + Q 2
K M(

Q 2)ενλαβ

× (p + pΔ)α

2
qβελ

μγ δpγ
Δqδ iγ5,

K C
νμ = 2

(mΔ − mN)2 + Q 2
K M(

Q 2)qν

×
[

Q 2 (p + pΔ)μ

2
+ q · p + pΔ

2
qμ

]
iγ5 (4)

with K M(Q 2) = 3(mN +mΔ)

2mN [(mN +mΔ)2+Q 2] .

Now, we want to express WV
νμ in the so-called ‘normal parity’

(NP) decomposition. Using the non-trivial relation [25]3

−iεαβμνaμbνγ5 = (/a/b − a · b)iσαβ + /b(γαaβ − γβaα)

− /a(γαbβ − γβbα) + (aαbβ − aβbα),

and assuming a real Δ as in Ref. [23], and thus the validity of the
Δ on-shell constrains (i.e. ψ̄

μ
Δγμ 
 0, ψ̄

μ
Δ pΔ,μ 
 0, p2

Δ 
 m2
Δ being

ψ
μ
Δ de Δ field) we get a simplified version

WV
νμ(pΔ,q,p)

= √
2i

{
−(

G M
(

Q 2) − G E
(

Q 2))mΔK M
(

Q 2)H3νμ

+
[

G M
(

Q 2) − G E
(

Q 2)

2 We have replaced q → −q in Ref. [21] and we have corrected a misprint (by
adding a factor of 2 in the denominator of K M

νμ) in Refs. [9,10].
3 The BD convention is used in Ref. [25].
+ 2
2G E(Q 2)(q · pΔ) − GC (Q 2)Q 2

(mΔ − mN)2 + Q 2

]
K M

(
Q 2)H4νμ

−
[

2
2G E(Q 2)m2

Δ + (pΔ · q)GC (Q 2)

(mΔ − mN)2 + Q 2

]
K M

(
Q 2)H6νμ

}
γ5,

(5)

where

Hνμ
3 (p, pΔ,q) = gνμ/q − qνγ μ,

Hνμ
4 (p, pΔ,q) = gνμq.pΔ − qν pμ

Δ,

Hνμ
5 (p, pΔ,q) = gνμq.p − qν pμ,

Hνμ
6 (p, pΔ,q) = gνμq2 − qνqμ. (6)

Note that Hνμ
5 tensor does not contribute to Eq. (5), but it will ap-

pear in forthcoming expressions. Eqs. (4) are independent of taking
p = pΔ ± q (here the + sign corresponds to the Δ-pole contribu-
tion (Fig. 1(h)) and − sign to the cross-Δ term (Fig. 1(g))) which is
clear since ενμαβqαqβ = 0. Thus, Eq. (5) is valid in both cases, but

the specific value of q · pΔ(= ±m2
N +Q 2−m2

Δ

2 ) depends on the partic-
ular contribution to the amplitude. Now, if we set on the Δ-pole
contribution and replace p = pΔ + q we can rewrite (5) as

WV
νμ(pΔ,q,p = pΔ + q) = iΓ V

νμ(pΔ,q),

Γ V
νμ(pΔ,q) = √

3

[
− C V

3 (Q 2)

mN
H3νμ − C V

4 (Q 2)

m2
N

H4νμ

− C V
5 (Q 2)

m2
N

H5νμ + C V
6 (Q 2)

m2
N

H6νμ

]
γ5, (7)

where we have introduced a new set of FF’s4:

C V
3

(
Q 2) = mΔ

mN
R M

[
G M(0) − G E(0)

]
F V (

Q 2),
C V

4

(
Q 2) = −R M

[
G M(0) − 3mΔ

mΔ − mN
G E(0)

]
F V (

Q 2),
C V

5

(
Q 2) = 0,

C V
6

(
Q 2) = −R M

2mΔ

mΔ − mN
G E(0)F V (

Q 2), (8)

being R M =
√

3
2

mN
mN +mΔ

and F V (Q 2) = (1 + Q 2

(mN +mΔ)2 )−1G V (Q 2).

Using mΔ = 1.211 GeV [26], mN = 0.940 GeV and the effective
values G M(0) = 2.97 and G E (0) = 0.055 fixed from photoproduc-
tion reactions [22], we get

C V
3 (0) = 2.02, C V

4 (0) = −1.24,

C V
5 (0) = 0, C V

6 (0) = −0.24. (9)

In order to make a numerical comparison with other calcula-
tions that use the NP parametrization, we consider Refs. [8] (here-
after denoted as HNV) and [11], which both use the same model.
Our hadronic weak vertices defined in Eq. (2) are related with
those used in [8,11] (where the W boson is considered as an in-
coming particle) as

4 Since C V
6 (Q 2) ∼ − 4G E (Q 2)m2

Δ+GC (Q 2)(m2
N +Q 2−m2

Δ)

(mΔ−mN )2+Q 2 we adopt GC ((mΔ − mN )2) =
2mΔ/(mΔ − m)G E ((mΔ − mN )2), in order to avoid kinematical singularities when
Q 2 → −(mΔ − mN )2 [23]. As (mΔ − mN )2 ∼= (0.04GeV /c)2 we assume GC (0) ∼=

2mΔ

m −m G E (0).

Δ N
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Oλ
B(a,b,c,d,e, f )(q)

= ±i
[

jλcc+|N P (−q) + jλcc+|C N P (−q) + jλcc+|C T (−q)

+ jλcc+|P P (−q) + jλcc+|P F (−q)
]
,

Oλ
B(g)(q) = ±i jλcc+|CΔP (−q),

Oλ
R

(
p,p′,q

) = ±i jλcc+|ΔP (−q), (10)

where the jλcc+|i are given in Eq. (51) from HNV. Here the + sign
corresponds to the pπ+ and nπ+ final state reactions and − to
the pπ0 one, since for the latter the isospin matrix elements ac-
counts a minus sign with respect to ours. Let us remark that the
authors in HNV include the ρ meson contribution through a mod-
ification in the contact term but don’t do the same for the ω one.
Also, the expressions for the Hνμ

3,4,5 tensors agree with those given

in Eq. (6), but a different expression, Hνμ
6 = m2

N gνμ , is used for
the remaining FF. In addition, they use the same Eq. (7) but with
C V

i (Q 2) = C V
i (0)F V

i (Q 2) being (Q 2 in units of GeV2)

F V
3

(
Q 2) = F V

4

(
Q 2) = 1

(1 + Q 2/m2
V )2

1

(1 + Q 2/4 × m2
V )2

,

F V
5

(
Q 2) = 1

(1 + Q 2/m2
V )2

1

(1 + Q 2/0.776 × m2
V )2

, (11)

with mV = 0.84 GeV and

C V
3 (0) = 2.13, C V

4 (0) = −1.51,

C V
5 (0) = 0.48, C V

6 (0) = 0. (12)

In Eq. (9) we get C V
5 (0) = 0 as assumed in the M1 dominance

model5 and C V
6 (0) �= 0 since our Hνμ

6 satisfies current conserva-
tion condition (qν Hνμ

6 = 0) as demanded by the CVC hypothesis.
As it can be observed from Eqs. (9) and (12), our values for C V

3,4(0)

are consistent with each other.
Now, let us consider the axial-vector contribution W A

νμ . Within
the BLM model, the axial vertex is taken as in Refs. [6,7], which
can be obtained after multiplying WV

νμ by −γ5. It reads

W A
νμ(pΔ,q,p)

= i

[
D1

(
Q 2)gνμ − D2(Q 2)

m2
N

(p + pΔ)α(gνμqα − qν gαμ)

+ D3(Q 2)

m2
N

pνqμ − i
D4(Q 2)

m2
N

εμναβ(p + pΔ)αqβγ5

]
. (13)

The last term in Eq. (13) will be dropped since we will not take
into account the contribution of the Δ deformation to the axial
current, i.e., we set D4(Q 2) = 0 and again we use the approxima-
tion where the Δ is treated as real in the weak vertex, getting

W A
νμ(pΔ,q)

= i

[(
D1

(
Q 2) ± D2(Q 2)Q 2

m2
N

)
gνμ − 2D2(Q 2)

m2
N

H4νμ

± D3(Q 2) + D2(Q 2)

m2
N

qνqμ

]
, (14)

where the − sign corresponds to the weak vertex in Fig. 1(g) and
+ to that in Fig. 1(h). The Q 2-dependence of the FF is [7]

5 C V
i (Q 2) are obtained from photo and electroproduction data of Δ in terms

of the multipole amplitudes E1+, M1+ , and S1+ . Recent data determine that
E(S)1+/M1+ ∼ −2.5%, and this ‘dominance’ of M1+ leads to C V

5 (0) = 0 and the
relation C V

4 (0) = − mN
m C V

3 (0) [27].

Δ

Di
(

Q 2) = Di(0)F A(
Q 2), for i = 1,2,

D3
(

Q 2) = 2m3
N

(mN + mΔ)(Q 2 + m2
π )

D1(0)F A(
Q 2), (15)

where F A(Q 2) = (1 + Q 2

M2
A
)−2(1 +aQ 2)e−bQ 2

with M A = 1.02 GeV.

The normalization of the axial FF at Q 2 = 0 is fixed by comparing
the non-relativistic limit of ūν

ΔW A
νμu in the Δ rest frame (pΔ =

(mΔ,0), p = (E N(q),−q)) with the non-relativistic QM [6,7]. We
have

D1(0) = 6g A

5

mN + mΔ

2mN F A(−(mΔ − mN)2)
,

D2(0) = −D1(0)
m2

N

(mN + mΔ)2
, (16)

and we can rewrite

W A
νμ(pΔ,q,p = pΔ + q) = iΓ A

νμ(pΔ,q),

Γ A
νμ(pΔ,q) = √

3

[
C A

5

(
Q 2)gνμ − C A

4 (Q 2)

m2
N

Hνμ
4

+ C A
6 (Q 2)

m2
N

qνqμ

]
. (17)

Comparison of Eq. (14) (for the plus sign) with (17) lead us to the
following FF’s (note that C A

5 (0) = D1(0)√
3

)

C A
4

(
Q 2) = − 2m2

N

(mN + mΔ)2
C A

5

(
Q 2)[1 − Q 2

(mN + mΔ)2

]−1

,

C A
5

(
Q 2) = D1(0)√

3
F A(

Q 2)[1 − Q 2

(mN + mΔ)2

]
,

C A
6

(
Q 2) = 2m3

N

(mN + mΔ)(Q 2 + m2
π )

C A
5

(
Q 2)[ (1 − Q 2+m2

π
mN (mN +mΔ)

)

1 − Q 2

(mN +mΔ)2

]
.

(18)

The corresponding expression from the HNV authors (by assuming
C A

3 = 0) are

C A
4

(
Q 2) = −1

4
C A

5

(
Q 2), C A

5

(
Q 2) = C A

5 (0)F A(
Q 2),

C A
6

(
Q 2) = C A

5

(
Q 2) m2

N

Q 2 + m2
π

, (19)

with F A(Q 2) = (1 + Q 2/m2
A)−2(1 + Q 2/3 × m2

A)−2 and mA =
1.05 GeV. Besides the different dependencies upon Q 2 through
the F A(Q 2) functions used in Eqs. (18) and (19), we observe fur-
ther differences coming from the contributions of terms between
square brackets in (18). Note that, at Q 2 = 0, we obtain

C A
4 (0) = −0.38C A

5 (0), C A
6 (0) = 0.87C A

5 (0)
m2

N

m2
π

, (20)

which are close to the values obtained by HNV, namely

C A
4 (0) = −0.25C A

5 (0), C A
6 (0) = C A

5 (0)
m2

N

m2
π

. (21)

Up to now, we have shown that a connection between the
Sachs and NP parameterizations of the W NΔ vertexes can be es-
tablished, and that the structure of the FF under the approximations
assumed are consistent. Nevertheless, to make complete the com-
parison, both models should be confronted within a numerical
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Fig. 2. Comparison of the Q 2-dependencies of the vector (V ) and axial (A) FF’s,
between the BLM [9] and HNV [8] models. The FF in C V

5 (Q 2) for the HNV model,
is also shown for comparison.

Fig. 3. The Q 2 dependency of the double ratio C A
i (Q 2)/C A

5 (Q 2) (i = 4,6) for BLM
and HNV models.

calculation where also the fitting of C A
5 (0) enter into the game.

We are going to achieve this by using results previously obtained
within the BLM [9] and HNV [8] models. The effects of adopting
different parameterizations for the Q 2-dependence of the FF’s are
shown in Fig. 2, where we compare the vector FF F V (Q 2) from
BLM with F V

3 (Q 2) = F V
4 (Q 2) from HNV; the Q 2-dependence is

shown also for F V
5 (Q 2) FF. We also display for comparison, the

axial FF in C A
5 (Q 2) for BLM, F A(Q 2)[1 − Q 2/(mN + mΔ)2], and

the corresponding one in HNV model. As it can be appreciated, we
do not expect important differences in the cross sections coming
from the different Q 2-dependencies of the FF’s. Despite the fact
that C V

5 (0) = 0 in the BLM model while C V
5 (0) = 0.48 in the HNV

one, the magnitude and quick drop of F V
5 (Q 2) seems to indicate a

small contribution of this form factor.
Now, we focus on the effect of the additional Q 2-dependent

terms appearing in the C A
4,6(Q 2) FF’s in the BLM (Eq. (18)) but

not in the HNV (Eq. (19)) model, and also in the normalization
conditions, Eqs. (20) and (21) at Q 2 = 0. These effects are better
Fig. 4. Total cross section of νp → μ− pπ+ within the BLM model described in the
text. Results using Sachs (thick lines) and Normal Parity (thin lines) decompositions,
are shown for the B , R and B + R contributions to the scattering amplitude.

appreciated in the ratio
C A

i (Q 2)

C A
5 (Q 2)

for i = 4,6 which are displayed in

Fig. 3. As it can be observed, the Q 2-dependence of these rations is
not very strong and the departure from the unity comes essentially
from differences in C A

4,6(0). Since the effects of these FF are very

suppressed in the cross section with respect to those due to C A
5 (0),

we do not expect important differences between both approaches
due to these contributions.

Next, we compare calculations for the total cross section of the
most relevant νp → μ− pπ+ reaction, using alternatively the Sachs
(Eqs. (3), (4), (13), (15) and (16)) and NP (Eqs. (7), (8), (17) and
(18)) vertex, within the BLM model. We remark here that, within
this model, a value C A

5 (0) = 1.35 was previously obtained [9] by
fitting the differential cross section d〈σ 〉/dQ 2 using a Sachs de-
composition for the weak vertex.

Before we discuss the results, let us mention that the contri-
bution of Fig. 1(g) to the γ0WV †

μνγ0 term (see Eq. (3)) appear-
ing in the conjugated amplitude, changes its sign in the first
term of Eq. (5). Taking into account that γ0(iH3γ5, iH4,6γ5)

†γ0 =
(−iH3γ5, iH4,6γ5), the same result is obtained directly from
Eq. (7). Now, the values obtained for C V

4,5(Q 2) are not the same
as the ones obtained previously for Fig. 1(h) graph owing to the
change of sign for q · pΔ in (5) for the cross-Δ channel. In this
sense, the representation given in Eq. (3), apart from the assumed
approximations, is not totally equivalent to that given in Eq. (7).
For the axial part of the cross-Δ contribution we take into account
that γ0(igμν, iH4, iqμqν)†γ0 = (−igμν,−iH4,−iqμqν) and the mi-
nus sign in Eq. (14). We get a different dependence on the C A

5 (Q 2)

form factor and the sign of C A
6 (Q 2), but not in the value of C A

5 (0).
Again the result will not be the same as taking directly the conju-
gate of Eq. (17).

As it can be observed in Fig. 4, results for the resonant R cross
section using the NP vertex are slightly below the one obtained by
using the Sachs vertex for the values of the constants and FF in
correspondence. This can be understood considering that moving
from Eq. (3) to (7) we have assumed the Δ to be on-shell (real Δ),
which changes the momentum dependence of the vertex, and its
coupling to the propagator (1) that has components behaving dif-
ferently as p2

Δ increases. As far as the background contribution B
(which includes the graph Fig. 1(g)) is concerned, the effect is op-
posite and is mainly due to the same approximation, and the effect
of the conjugation mentioned above is of minor importance. As
a consequence, the R − B interference will be different in both
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Fig. 5. The R and R + B contributions to the cross section in the BLM [9] and HNV
[8] models for different values of the axial constant C A

5 (0). Also results for the HNV
model where Δ × 21/2 means that for the π NΔ strong coupling constant we use
fπ NΔ/mπ × √

2, are shown both for the same C A
5 (0) = 0.87 and for C A

5 (0) = 1.2.

models and the cross section obtained within the NP model will
have a value that is below the results obtained using the Sachs
parametrization. This indicates that the fitted value of C A

5 (0) will
depend on the specific model used for the weak W NΔ vertex.

Finally, we compare the calculations obtained within the BLM
model (Sachs form for W NΔ vertex) with the corresponding ones
from HNV (NP form). The main difference between both models,
apart from the specific parameters and FF, is the form adopted for
the Δ propagator in Eq. (1): we use a value A = −1/3 consis-
tent with the adopted for the vertex, and HNV take A = −1 which
is equivalent to dropping the second term in Eq. (1). Second, the
authors in HNV use an energy-dependent width ΓΔ(p2

Δ), which
would need to include energy-dependent vector FF’s induced from
vertex corrections as it is required by gauge invariance in the case
that the corresponding radiative scattering is considered [15,26].
We have adopted the value C A

5 (0) = 1.35 in BLM case [9] and the
value C A

5 (0) = 0.867 [8] is used for the HNV model (more recently
a value C A

5 (0) = 1 was reported [14]).
In Fig. 5 we show results for the νp → μ− pπ+ total cross sec-

tion as a function of the neutrino energy Eν ; the R and R + B
contributions are plotted separately. As it can be observed, the re-
sults for the resonant R contribution to the cross section in the
HNV model (thin dashed lines) roughly account one-half of the
cross section in the BLM model (thin full lines). By this reason,
we probe with results obtained by using C A

5 (0) = 0.867 and 1.2
but with fπ NΔ/mπ × √

2 (which duplicates the R cross section)
within the HNV model, which are shown as “Δ × 21/2”. The re-
sults of these models are compared to experimental data from
Ref. [18] (below an energy cutoff of 1.4 GeV in the π N invariant
mass). As it can be observed, the results of the BLM model agree
with data (see also Ref. [9]); the results from HNV model using
C A

5 (0) = 0.867 agrees with data only if the resonance Δ contribu-
tion to the cross section is multiplied by a factor of two. Results
corresponding to C A

5 (0) = 0.867 in the HNV model are well below
data, and this cannot be attributed to the different parameteriza-
tions of the weak vertex (Sachs and NP) since; as we have seen be-
fore, these differences are much smaller if the same value of C A

5 (0)

are used. Note also that the results corresponding to C A
5 (0) = 1.2

and fπ NΔ/mπ × √
2 agree very well with those reported in HNV

[8] for this value of the axial constant.
In summary, in this work we have compared calculations for

the total cross section of the νp → μ− pπ+ channel by adopting
two different prescriptions for the W NΔ weak vertex. Important
differences are observed, showing that the momentum behavior
of the Sachs parametrization for the vertex is not the same as
the one assumed for the Normal Parity case. As a consequence,
the value of C A

5 (0) that is fitted from data depends upon the spe-
cific parametrization of the weak vertex. In our model we use the
Sachs parametrization, and make also a comparison with calcula-
tions adopting the Normal Parity form which get a very different
value for C A

5 (0), trying to look for the origin of the differences in
the weak pion production cross section results.
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