1,979 research outputs found
Singular value decomposition for the 2D fan-beam Radon transform of tensor fields
In this article we study the fan-beam Radon transform of
symmetrical solenoidal 2D tensor fields of arbitrary rank in a unit disc
as the operator, acting from the object space to the data space
The orthogonal polynomial basis of solenoidal tensor
fields on the disc was built with the help of Zernike polynomials
and then a singular value decomposition (SVD) for the operator
was obtained. The inversion formula for the fan-beam tensor transform follows from this decomposition. Thus obtained inversion formula can be
used as a tomographic filter for splitting a known tensor field into potential
and solenoidal parts. Numerical results are presented.Comment: LaTeX, 37 pages with 5 figure
Point force manipulation and activated dynamics of polymers adsorbed on structured substrates
We study the activated motion of adsorbed polymers which are driven over a
structured substrate by a localized point force.Our theory applies to
experiments with single polymers using, for example, tips of scanning force
microscopes to drag the polymer.We consider both flexible and semiflexible
polymers,and the lateral surface structure is represented by double-well or
periodic potentials. The dynamics is governed by kink-like excitations for
which we calculate shapes, energies, and critical point forces. Thermally
activated motion proceeds by the nucleation of a kink-antikink pair at the
point where the force is applied and subsequent diffusive separation of kink
and antikink. In the stationary state of the driven polymer, the collective
kink dynamics can be described by an one-dimensional symmetric simple exclusion
process.Comment: 7 pages, 2 Figure
Self-similar turbulent dynamo
The amplification of magnetic fields in a highly conducting fluid is studied
numerically. During growth, the magnetic field is spatially intermittent: it
does not uniformly fill the volume, but is concentrated in long thin folded
structures. Contrary to a commonly held view, intermittency of the folded field
does not increase indefinitely throughout the growth stage if diffusion is
present. Instead, as we show, the probability-density function (PDF) of the
field strength becomes self-similar. The normalized moments increase with
magnetic Prandtl number in a powerlike fashion. We argue that the
self-similarity is to be expected with a finite flow scale and system size. In
the nonlinear saturated state, intermittency is reduced and the PDF is
exponential. Parallels are noted with self-similar behavior recently observed
for passive-scalar mixing and for map dynamos.Comment: revtex, 4 pages, 5 figures; minor changes to match published versio
Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors
Iterative image reconstruction algorithms play an increasingly important role in modern tomographic systems, especially in emission tomography. With the fast increase of the sizes of the tomographic data, reduction of the computation demands of the reconstruction algorithms is of great importance. Fourier-based forward and back-projection methods have the potential to considerably reduce the computation time in iterative reconstruction. Additional substantial speed-up of those approaches can be obtained utilizing powerful and cheap off-the-shelf fast Fourier transform (FFT) processing hardware. The Fourier reconstruction approaches are based on the relationship between the Fourier transform of the image and Fourier transformation of the parallel-ray projections. The critical two steps are the estimations of the samples of the projection transform, on the central section through the origin of Fourier space, from the samples of the transform of the image, and vice versa for back-projection. Interpolation errors are a limitation of Fourier-based reconstruction methods. We have applied min-max optimized Kaiser-Bessel interpolation within the nonuniform FFT (NUFFT) framework and devised ways of incorporation of resolution models into the Fourier-based iterative approaches. Numerical and computer simulation results show that the min-max NUFFT approach provides substantially lower approximation errors in tomographic forward and back-projection than conventional interpolation methods. Our studies have further confirmed that Fourier-based projectors using the NUFFT approach provide accurate approximations to their space-based counterparts but with about ten times faster computation, and that they are viable candidates for fast iterative image reconstruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85804/1/Fessler62.pd
Iterative Tomographic Image Reconstruction Using Fourier-Based Forward and Back-Projectors
Iterative image reconstruction algorithms play an increasingly important role in modern tomographic systems, especially in emission tomography. With the fast increase of the sizes of the tomographic data, reduction of the computation demands of the reconstruction algorithms is of great importance. Fourier-based forward and back-projection methods have the potential to considerably reduce the computation time in iterative reconstruction. Additional substantial speed-tip of those approaches can be obtained utilizing powerful and cheap off-the-shelf FFT processing hardware. The Fourier reconstruction approaches are based on the relationship between the Fourier transform or the image and Fourier transformation of the parallel-ray projections. The critical two steps are the estimations of the samples of the projection transform, on the central section through the origin of Fourier space, from the samples of the transform of the image, and vice versa for back-projection. Interpolation errors are a limitation of Fourier-based reconstruction methods. We have applied min-max optimized Kaiser-Bessel interpolation within the nonuniform Fast Fourier transform (NUFFT) framework. This approach is particularly well suited to the geometries of PET scanners. Numerical and computer simulation results show that the min-max NUFFT approach provides substantially lower approximation errors in tomographic forward and back-projection than conventional interpolation methods, and that it is a viable candidate for fast iterative image reconstruction.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85805/1/Fessler178.pd
Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers
The small-scale dynamo is a process by which turbulent kinetic energy is
converted into magnetic energy, and thus is expected to depend crucially on the
nature of turbulence. In this work, we present a model for the small-scale
dynamo that takes into account the slope of the turbulent velocity spectrum
v(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation and
the typical velocity on that scale. The time evolution of the fluctuation
component of the magnetic field, i.e., the small-scale field, is described by
the Kazantsev equation. We solve this linear differential equation for its
eigenvalues with the quantum-mechanical WKB-approximation. The validity of this
method is estimated as a function of the magnetic Prandtl number Pm. We
calculate the minimal magnetic Reynolds number for dynamo action, Rm_crit,
using our model of the turbulent velocity correlation function. For Kolmogorov
turbulence (theta=1/3), we find that the critical magnetic Reynolds number is
approximately 110 and for Burgers turbulence (theta=1/2) approximately 2700.
Furthermore, we derive that the growth rate of the small-scale magnetic field
for a general type of turbulence is Gamma ~ Re^((1-theta)/(1+theta)) in the
limit of infinite magnetic Prandtl numbers. For decreasing magnetic Prandtl
number (down to Pm approximately larger than 10), the growth rate of the
small-scale dynamo decreases. The details of this drop depend on the
WKB-approximation, which becomes invalid for a magnetic Prandtl number of about
unity.Comment: 13 pages, 8 figures; published in Phys. Rev. E 201
The Generation of Magnetic Fields Through Driven Turbulence
We have tested the ability of driven turbulence to generate magnetic field
structure from a weak uniform field using three dimensional numerical
simulations of incompressible turbulence. We used a pseudo-spectral code with a
numerical resolution of up to collocation points. We find that the
magnetic fields are amplified through field line stretching at a rate
proportional to the difference between the velocity and the magnetic field
strength times a constant. Equipartition between the kinetic and magnetic
energy densities occurs at a scale somewhat smaller than the kinetic energy
peak. Above the equipartition scale the velocity structure is, as expected,
nearly isotropic. The magnetic field structure at these scales is uncertain,
but the field correlation function is very weak. At the equipartition scale the
magnetic fields show only a moderate degree of anisotropy, so that the typical
radius of curvature of field lines is comparable to the typical perpendicular
scale for field reversal. In other words, there are few field reversals within
eddies at the equipartition scale, and no fine-grained series of reversals at
smaller scales. At scales below the equipartition scale, both velocity and
magnetic structures are anisotropic; the eddies are stretched along the local
magnetic field lines, and the magnetic energy dominates the kinetic energy on
the same scale by a factor which increases at higher wavenumbers. We do not
show a scale-free inertial range, but the power spectra are a function of
resolution and/or the imposed viscosity and resistivity. Our results are
consistent with the emergence of a scale-free inertial range at higher Reynolds
numbers.Comment: 14 pages (8 NEW figures), ApJ, in press (July 20, 2000?
On magnetic field generation in Kolmogorov turbulence
We analyze the initial, kinematic stage of magnetic field evolution in an
isotropic and homogeneous turbulent conducting fluid with a rough velocity
field, v(l) ~ l^alpha, alpha<1. We propose that in the limit of small magnetic
Prandtl number, i.e. when ohmic resistivity is much larger than viscosity, the
smaller the roughness exponent, alpha, the larger the magnetic Reynolds number
that is needed to excite magnetic fluctuations. This implies that numerical or
experimental investigations of magnetohydrodynamic turbulence with small
Prandtl numbers need to achieve extremely high resolution in order to describe
magnetic phenomena adequately.Comment: 4 pages, revised, new material adde
- …