21 research outputs found

    Ozone measurements in Europe

    No full text
    Ozone measurements have been apart of EMEP since its third phase in 1984–1986 and since 1988 data have been collected systematically. By 1992 data for 76 sites were being collected by the Chemical Co-ordinating Centre in NILU. The mean ozone concentration increases from 20–25ppb in the western and northern fringes to 30–35 in central areas of Europe. There is also evidence from the last decade of an upward trend of up to 0.5ppb y–1 at rural sites in the UK. The data have been analysed to estimate the spatial patterns in AOT 40 for ozone effects on crops and forests. The data show that the critical level for cereal crops of 5300 ppb.h above a threshold of 40 ppb is exceeded over almost all of continental Europe south of 65°N and over most of S.Britain. A similar exercise for the AOT 40 for the forest again shows exceedances of the critical load of 104 ppb.h across all the mapped area of Continental Europe south of 65°N including S.Britian. As land use for forestry and ozone dose both increase with altitude, and these effects have not so far been incorporated in the AOT 40 assessment for forests, the degree of exceedence for forests may have been significantly under-estimated

    Structure of the ALS Mutation Target Annexin A11 Reveals a Stabilising N-Terminal Segment

    No full text
    The functions of the annexin family of proteins involve binding to Ca2+^{2+}, lipid membranes, other proteins, and RNA, and the annexins share a common folded core structure at the C terminus. Annexin A11 (AnxA11) has a long N-terminal region, which is predicted to be disordered, binds RNA, and forms membraneless organelles involved in neuronal transport. Mutations in AnxA11 have been linked to amyotrophic lateral sclerosis (ALS). We studied the structure and stability of AnxA11 and identified a short stabilising segment in the N-terminal end of the folded core, which links domains I and IV. The crystal structure of the AnxA11 core highlights main-chain hydrogen bonding interactions formed through this bridging segment, which are likely conserved in most annexins. The structure was also used to study the currently known ALS mutations in AnxA11. Three of these mutations correspond to buried Arg residues highly conserved in the annexin family, indicating central roles in annexin folding. The structural data provide starting points for detailed structure–function studies of both full-length AnxA11 and the disease variants being identified in ALS

    Structure of the ALS mutation target annexin A11 reveals a stabilising N-terminal segment

    No full text
    Abstract The functions of the annexin family of proteins involve binding to Ca2+, lipid membranes, other proteins, and RNA, and the annexins share a common folded core structure at the C terminus. Annexin A11 (AnxA11) has a long N-terminal region, which is predicted to be disordered, binds RNA, and forms membraneless organelles involved in neuronal transport. Mutations in AnxA11 have been linked to amyotrophic lateral sclerosis (ALS). We studied the structure and stability of AnxA11 and identified a short stabilising segment in the N-terminal end of the folded core, which links domains I and IV. The crystal structure of the AnxA11 core highlights main-chain hydrogen bonding interactions formed through this bridging segment, which are likely conserved in most annexins. The structure was also used to study the currently known ALS mutations in AnxA11. Three of these mutations correspond to buried Arg residues highly conserved in the annexin family, indicating central roles in annexin folding. The structural data provide starting points for detailed structure–function studies of both full-length AnxA11 and the disease variants being identified in ALS
    corecore