12,647 research outputs found

    Ultracold neutron depolarization in magnetic bottles

    Get PDF
    We analyze the depolarization of ultracold neutrons confined in a magnetic field configuration similar to those used in existing or proposed magneto-gravitational storage experiments aiming at a precise measurement of the neutron lifetime. We use an extension of the semi-classical Majorana approach as well as an approximate quantum mechanical analysis, both pioneered by Walstrom et al. [Nucl. Instr. Meth. Phys. Res. A 599, 82 (2009)]. In contrast with this previous work we do not restrict the analysis to purely vertical modes of neutron motion. The lateral motion is shown to cause the predominant depolarization loss in a magnetic storage trap. The system studied also allowed us to estimate the depolarization loss suffered by ultracold neutrons totally reflected on a non-magnetic mirror immersed in a magnetic field. This problem is of preeminent importance in polarized neutron decay studies such as the measurement of the asymmetry parameter A using ultracold neutrons, and it may limit the efficiency of ultracold neutron polarizers based on passage through a high magnetic field.Comment: 18 pages, 6 figure

    Spin flip loss in magnetic storage of ultracold neutrons

    Get PDF
    We analyze the depolarization of ultracold neutrons confined in a magnetic field configuration similar to those used in existing or proposed magneto-gravitational storage experiments aiming at a precise measurement of the neutron lifetime. We use an approximate quantum mechanical analysis such as pioneered by Walstrom \emph{et al} [Nucl. Instrum. Methods Phys. Res. A 599, 82 (2009)]. Our analysis is not restricted to purely vertical modes of neutron motion. The lateral motion is shown to cause the predominant depolarization loss in a magnetic storage trap.Comment: 12 pages, 3 figures, for Proceedings of Neutron Lifetime Worksho

    Calculation of geometric phases in electric dipole searches with trapped spin-1/2 particles based on direct solution of the Schr\"odinger equation

    Get PDF
    Pendlebury et al.\textit{et al.} [Phys. Rev. A 70\textbf{70}, 032102 (2004)] were the first to investigate the role of geometric phases in searches for an electric dipole moment (EDM) of elementary particles based on Ramsey-separated oscillatory field magnetic resonance with trapped ultracold neutrons and comagnetometer atoms. Their work was based on the Bloch equation and later work using the density matrix corroborated the results and extended the scope to describe the dynamics of spins in general fields and in bounded geometries. We solve the Schr\"odinger equation directly for cylindrical trap geometry and obtain a full description of EDM-relevant spin behavior in general fields, including the short-time transients and vertical spin oscillation in the entire range of particle velocities. We apply this method to general macroscopic fields and to the field of a microscopic magnetic dipole.Comment: 11 pages, 4 figure

    Shock Geometry and Spectral Breaks in Large SEP Events

    Get PDF
    Solar energetic particle (SEP) events are traditionally classified as "impulsive" or "gradual." It is now widely accepted that in gradual SEP events, particles are accelerated at coronal mass ejection-driven (CME-driven) shocks. In many of these large SEP events, particle spectra exhibit double power law or exponential rollover features, with the break energy or rollover energy ordered as (Q/A)^α, with Q being the ion charge in e and A the ion mass in units of proton mass m_p . This Q/A dependence of the spectral breaks provides an opportunity to study the underlying acceleration mechanism. In this paper, we examine how the Q/A dependence may depend on shock geometry. Using the nonlinear guiding center theory, we show that α ~ 1/5 for a quasi-perpendicular shock. Such a weak Q/A dependence is in contrast to the quasi-parallel shock case where α can reach 2. This difference in α reflects the difference of the underlying parallel and perpendicular diffusion coefficients κ_(||) and κ ⊥. We also examine the Q/A dependence of the break energy for the most general oblique shock case. Our analysis offers a possible way to remotely examine the geometry of a CME-driven shock when it is close to the Sun, where the acceleration of particle to high energies occurs

    Monojet searches for momentum-dependent dark matter interactions

    Get PDF
    We consider minimal dark matter scenarios featuring momentum-dependent couplings of the dark sector to the Standard Model. We derive constraints from existing LHC searches in the monojet channel, estimate the future LHC sensitivity for an integrated luminosity of 300 fb−1, and compare with models exhibiting conventional momentum-independent interactions with the dark sector. In addition to being well motivated by (composite) pseudo-Goldstone dark matter scenarios, momentum-dependent couplings are interesting as they weaken direct detection constraints. For a specific dark matter mass, the LHC turns out to be sensitive to smaller signal cross-sections in the momentum-dependent case, by virtue of the harder jet transverse-momentum distribution

    Anisotropic shock response of columnar nanocrystalline Cu

    Get PDF
    We perform molecular dynamics simulations to investigate the shock response of idealized hexagonal columnar nanocrystalline Cu, including plasticity, local shear, and spall damage during dynamic compression, release, and tension. Shock loading (one-dimensional strain) is applied along three principal directions of the columnar Cu sample, one longitudinal (along the column axis) and two transverse directions, exhibiting a strong anisotropy in the response to shock loading and release. Grain boundaries (GBs) serve as the nucleation sites for crystal plasticity and voids, due to the GB weakening effect as well as stress and shear concentrations. Stress gradients induce GB sliding which is pronounced for the transverse loading. The flow stress and GB sliding are the lowest but the spall strength is the highest, for longitudinal loading. For the grain size and loading conditions explored, void nucleation occurs at the peak shear deformation sites (GBs, and particularly triple junctions); spall damage is entirely intergranular for the transverse loading, while it may extend into grain interiors for the longitudinal loading. Crystal plasticity assists the void growth at the early stage but the growth is mainly achieved via GB separation at later stages for the transverse loading. Our simulations reveal such deformation mechanisms as GB sliding, stress, and shear concentration, GB-initiated crystal plasticity, and GB separation in nanocrystalline solids under shock wave loading

    Lean-ing method in an emergency department of the italian epicenter of the covid-19 outbreak: When the algorithm makes difference

    Get PDF
    The Lean method entails a set of standardized processes intending to optimize resources, reduce waste, and improve results. Lean has been proposed as an operative model for the Covid-19 outbreak. Herein, we summarized data resulted from the Lean model adoption in an Emergency Department of the Lombardy region, the Italian epicenter of the pandemic, to critically appraise its effectiveness and feasibility. The Lean algorithm was applied in the Humanitas Clinical and Research Hospital, Milan, north of Italy. At admission, patients underwent outdoor pre-triage for fe-ver, respiratory, and gastrointestinal symptoms, with a focus on SpO2. Based on these data, they were directed to the most appropriate area for the Covid-19 first-level screening. High-risk patients were assisted by trained staff for second-level screening and planning of treatment. Out of 7.778 patients, 21.9% were suspected of SARS-CoV-2 infection. Mortality was 21.9% and the infection rate in health workers was 4.8%. The lean model has proved to be effective in optimizing the overall management of Covid-19 patients in an emergency setting. It allowed for screening of a large volume of patients, while also limiting the health workers’ infection rate. Further studies are necessary to validate the suggested approach

    Loss Guided Activation for Action Recognition in Still Images

    Full text link
    One significant problem of deep-learning based human action recognition is that it can be easily misled by the presence of irrelevant objects or backgrounds. Existing methods commonly address this problem by employing bounding boxes on the target humans as part of the input, in both training and testing stages. This requirement of bounding boxes as part of the input is needed to enable the methods to ignore irrelevant contexts and extract only human features. However, we consider this solution is inefficient, since the bounding boxes might not be available. Hence, instead of using a person bounding box as an input, we introduce a human-mask loss to automatically guide the activations of the feature maps to the target human who is performing the action, and hence suppress the activations of misleading contexts. We propose a multi-task deep learning method that jointly predicts the human action class and human location heatmap. Extensive experiments demonstrate our approach is more robust compared to the baseline methods under the presence of irrelevant misleading contexts. Our method achieves 94.06\% and 40.65\% (in terms of mAP) on Stanford40 and MPII dataset respectively, which are 3.14\% and 12.6\% relative improvements over the best results reported in the literature, and thus set new state-of-the-art results. Additionally, unlike some existing methods, we eliminate the requirement of using a person bounding box as an input during testing.Comment: Accepted to appear in ACCV 201

    Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    Get PDF
    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. The CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations suggest that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer

    The role of interplanetary scattering in western hemisphere large solar energetic particle events

    Get PDF
    Using high-sensitivity instruments on the ACE spacecraft, we have examined the intensities of O and Fe in 14 large solar energetic particle events whose parent activity was in the solar western hemisphere. Sampling the intensities at low (~273 keV nucleon to the -1) and high (~12 MeV nucleon to the -1) energies, we find that at the same kinetic energy per nucleon, the Fe/O ratio decreases with time, as has been reported previously. This behavior is seen in more than 70% of the cases during the rise to maximum intensity and continues in most cases into the decay phase. We find that for most events if we compare the Fe intensity with the O intensity at a higher kinetic energy per nucleon, the two time-intensity profiles are strikingly similar. Examining alternate scenarios that could produce this behavior, we conclude that for events showing this behavior the most likely explanation is that the Fe and O share similar injection profiles near the Sun, and that scattering in the interplanetary medium dominates the profiles observed at 1 AU
    corecore