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PHYSICAL REVIEW C 86, 065501 (2012)

Ultracold neutron depolarization in magnetic bottles

A. Steyerl,* C. Kaufman, G. Müller, S. S. Malik, and A. M. Desai
Department of Physics, University of Rhode Island, Kingston, Rhode Island 02881, USA

(Received 28 September 2012; published 7 December 2012)

We analyze the depolarization of ultracold neutrons confined in a magnetic field configuration similar to those
used in existing or proposed magnetogravitational storage experiments aiming at a precise measurement of the
neutron lifetime. We use an extension of the semiclassical Majorana approach as well as an approximate quantum
mechanical analysis, both pioneered by Walstrom et al. [Nucl. Instrum. Methods Phys. Res. A 599, 82 (2009)].
In contrast with this previous work we do not restrict the analysis to purely vertical modes of neutron motion.
The lateral motion is shown to cause the predominant depolarization loss in a magnetic storage trap. The system
studied also allowed us to estimate the depolarization loss suffered by ultracold neutrons totally reflected on a
nonmagnetic mirror immersed in a magnetic field. This problem is of preeminent importance in polarized neutron
decay studies such as the measurement of the asymmetry parameter A using ultracold neutrons, and it may limit
the efficiency of ultracold neutron polarizers based on passage through a high magnetic field.

DOI: 10.1103/PhysRevC.86.065501 PACS number(s): 28.20.−v, 14.20.Dh, 21.10.Tg

I. INTRODUCTION

The neutron lifetime τn is an important parameter in tests
of the standard model of particle physics. It also affects the
rate of helium production in the early universe and the energy
production in the sun. The current Particle Data Group (PDG)
average is τn = 880.1 ± 1.1 s [1]. However, the value of
one experiment [2], which reported the lowest measurement
uncertainty of ∼0.8 s, is ∼3.5 s lower than the bulk of other
data in the PDG collection [3–8], that are grouped consistently
around 882.0 s (± 1.0 s) [9]. Therefore the actual uncertainty of
τn to be used in cosmological calculations may be of the order
of 2 s or more. As a possible way of advancing this field, storage
of polarized ultracold neutrons (UCNs) in a magnetic trap
has been pioneered by Paul et al. [10] and is currently being
pursued vigorously by several groups worldwide [11–15]. One
advantage of magnetic UCN storage versus storage in material
bottles, the method used in a number of previous neutron
lifetime measurements [3,4,6,8], is the potential absence of
losses due to effects other than β decay. There are no wall
losses, the slow loss due to quasistable orbits is serious but
believed to be manageable by avoiding regular orbits [14], and
the potential loss due to depolarization, defined as spin flip
relative to the local field direction, is commonly assumed to be
negligible. For systems using permanent magnets the question
of gradual demagnetization over time appears to have found
little attention so far.

Until recently UCN depolarization estimates [16,17] were
based on Majorana’s quasiclassical result of 1932 [18] for a
free polarized particle with magnetic moment moving with
constant velocity vector through a nonuniform static magnetic
field of specific form. Only its spin state was assumed to
be affected by the magnetic field. This model predicted
a depolarization probability D = exp(−πωL/2ω) for one
passage through the field. This value decreases exponentially
with the adiabaticity parameter ωL/ω, where ω is the frequency
of rotation of the field as seen from the reference frame of
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the moving particle, in the critical region where the field
rotates fastest while the magnitude B of the magnetic field
may be small. ωL is the Larmor frequency. For magnetic
field parameters as currently used or proposed for UCN
storage, D would be of order exp(−106), thus immeasurably
small. Recently, Walstrom et al. [14] pointed out that the values
of D for confined, rather than freely moving, neutrons are much
larger. For a UCN moving along a vertical path in the storage
system proposed by them, D was estimated to be in the range
D ∼ 10−20 to 10−23. This is much larger than the Majorana
value but still negligible in any actual or projected neutron
lifetime experiment.

Using a simplified model of magnetic field distribution we
extend the theory of [14] to include arbitrary UCN motion with
both vertical and horizontal velocity components, confined to
the vertical space between upper and lower turning points that
depend only on the UCN energy for vertical motion. In our
model (introduced in Sec. II) the magnetic field magnitude B is
uniform within any horizontal plane, so there is no horizontal
component of magnetic force. Therefore the neutron moves
with constant velocity in the horizontal z and x directions.
We show that D could reach a level approaching the tolerance
limit for a high precision neutron lifetime measurement unless
precautions are taken. As is well known the most critical
issue is the choice of a stabilization field perpendicular to
the magnetic mirror field, of sufficient strength so that the
depolarization rate will be negligible in a neutron lifetime
experiment.

Our model field is close to the “bathtub configuration”
of Ref. [14] but the lateral confinement of UCNs, achieved
there by double curvature of the magnetic mirror, is simulated
differently. The magnetic mirror is horizontal and extends
to infinity in both lateral dimensions. However, one could
imagine the presence of ideal vertical mirrors reflecting the
UCNs back and forth in the horizontal directions without any
change in the analysis.

More specifically, we use an infinite ideal planar Halbach
array [19], which is free of the field ripples present in actual
realizations [14]. In the design of Ref. [14], the ripples are
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important only within about 1 mm of the surface of the
magnets. This region is not reached by the UCNs whose
maximum energy (for vertical motion) is ∼45 neV (for the
parameters in Ref. [14]), since they reverse their flight direction
before entering this zone.

Using this model of field distribution we have also studied
the problem of depolarization of UCNs in reflection from a
nonmagnetic mirror immersed in a nonuniform magnetic field.
This question is important as a mechanism that may limit the
efficiency of UCN polarizers based on transmission through
a magnetic field. For a sufficiently strong field, neutrons
in only one spin state can pass the field to proceed to the
experiment. Otherwise they are reflected. However, following
the polarizer the UCNs are usually reflected on trap or guide
walls exposed to the stray field of the polarizer and thus
may lose their 100% polarization if the reflection process
involves depolarization. Moreover, a possible depolarization
on nonmagnetic trap walls in a magnetic field is highly relevant
in measurements of the neutron decay asymmetry parameter A

using ultracold neutrons [20,21]. This problem has first been
investigated by Pokotilovski [17] who used an adaptation of
the Majorana model to the reflection geometry. In the present
work we study certain aspects of this problem by imagining
a horizontal lossless nonmagnetic UCN mirror inserted at a
variable height into the magnetogravitational storage space.
The net depolarization per bounce on this mirror will be
compared to the depolarization for one bounce in the magnetic
field in the absence of the mirror to obtain an estimate for the
depolarization effect of the mirror.

The topic of UCN depolarization in magnetic storage or in
mirror reflection in a magnetic field raises interesting questions
of quantum interpretation. Figure 3 of Ref. [14] and our Fig. 2
(to be discussed in Sec. III B2) show the probability for the
neutron to be in the spin-flipped state (relative to the field direc-
tion) as a function of position of the neutron as it moves through
the magnetic storage space. The curve is strongly peaked at
the critical level where the field rotates fastest in the ref-
erence frame of the moving neutron. This behavior is the
same as displayed by the Majorana result [18] (where it is
more difficult to deduce since the author used a quantization
axis fixed in space rather than rotating together with the field).
In a semiclassical interpretation, as the UCN starts moving
from one turning point, say the upper one, down toward the
lower one, the spin vector rotates away from the quantization
axis (which was chosen parallel to the local magnetic field
vector in Ref. [14]). It reaches a certain maximum angle around
the critical zone; then this rotation is reversed and ends at a
much smaller value at the next turning point for UCN motion.
This indicates that an analyzer of neutron polarization placed
at different heights would show a variation of depolarization
by many orders of magnitude (>8 decades for the example
shown in Fig. 3 of Ref. [14]) over the vertical range of the
storage space. The depolarization rate expected for an actual
UCN magnetic storage experiment, without any polarization
analyzer intersecting the beam, is determined by the current
of UCNs in the “wrong” spin state, i.e., of high-field seekers
leaving the system at the lower and upper turning points while
the “correct” (high-field repelled) state is reflected and returns
to the storage space. This association of net depolarization with

loss currents is consistent with the following interpretation: At
the turning points a measurement is performed (in the sense of
quantum mechanics), conceptually by neutron detectors placed
just below the bottom and just above the top of the storage
region for a given UCN energy for vertical motion. These
detectors would intersect the UCNs in the “wrong” spin state as
they exit the storage system. In the Copenhagen interpretation,
such a measurement (actual or hypothetical) resets the UCN
wave function to a pure state of high-field repelled neutrons.
The spin state then evolves as described by the spin-dependent
Schrödinger equation (or its semiclassical analog) until the
next “measurement” takes place at the following turning point
and the process of wave collapse and wave evolution is
repeated. Alternative interpretations are conceivable but we
will use the picture outlined above.

Following Ref. [14] we use the Wentzel-Kramers-
Brillouin (WKB) approximation to solve the spin-dependent
Schrödinger equation. This appears justified since the spatial
variation of field variables (gravitational potential and mag-
netic field B) is much slower than the variation of UCN wave
function. The scales are of order cm for gravity and B, and of
order μm or less for the neutron wavelength.

We are aware of the fact that an exact treatment of UCN
depolarization in magnetic storage may involve quantum
electrodynamics since the moving neutron, in its reference
frame, is affected by a time-dependent electromagnetic field,
i.e., by low-energy photons. We will also neglect temporal
fluctuations of the field due to mechanical vibrations or, if
electromagnets are used for field generation, AC components
of the current supply. We are not aware of any work on
time-dependent effects of this kind in magnetic UCN storage.

II. MAGNETIC FIELD DISTRIBUTION

We consider a Halbach array [19] of permanent magnets of
thickness d covering the infinite (zx) plane, where the x axis
points to the right, the y axis points up (against gravity) and
the z axis toward the front (Fig. 1). We choose y = 0 at the
upper magnet surface and will closely follow the description
in Ref. [14], apart from this choice of system of coordinates.
This choice will allow us to use the Pauli matrices in their
standard form.

In the limit of infinitely fine division of magnet blocks in
the x direction, let the magnetization vector have a constant
magnitude M0 but, viewed along the positive z direction, rotate
clockwise in the (xy) plane with periodicity L = 2π/K in x

direction:

M(x) = M0(x̂ cos Kx + ŷ sin Kx). (1)

Using a complex quantity M̄ = Mx + iMy , Eq. (1) can also
be written M̄ = M0eiKx . x̂ and ŷ are unit vectors.

We choose the same parameters as for the design in
Ref. [14], thus L = 5.2 cm and K = 1.21 cm−1. The special
feature of the Halbach system is that it generates a magnetic
field only on one side of the magnets, namely in the half space
y > 0 for clockwise sense of rotation. This Halbach field is

BH (x, y) = B0e−Ky(x̂ cos Kx − ŷ sin Kx), (2)
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FIG. 1. For our field model, the arrows show the Halbach
magnetic field BH as it rotates in the (xy) plane. Its magnitude
BH decreases exponentially with height y and is represented by the
arrow length using a log scale. The angle φ = −Kx of the Halbach
field is also shown. The superimposed stabilization field B1 in the z

direction increases slowly with y as in Ref. [14] and is symbolized
by the crosses of variable size.

or, in complex notation, B̄H = B0e−Kye−iKx . B0 = Brem(1 −
e−Kd ) is determined by the remanent field Brem and the block
depth d = 2.54 cm. The magnitude of BH , BH = B0e−Ky , only
depends on the vertical coordinate y. The field distribution is
shown schematically in Fig. 1.

In the actual scheme [14], the uniform rotation is replaced
by dividing the rotation period L into four blocks, each of
length L/4 and with the same magnetization M , but with an
angle of 90◦ between the directions of M in adjacent blocks
(schematically represented as · · · ←↓→↑← · · ·). Alternative
designs are in the form of vertical or horizontal cylinders where
the magnets are assembled along the cylindrical surface: in a
dipolar way in Ref. [11], with adjacent blocks magnetized
in the peripheral direction with equal magnetic poles facing
each other (schematically: · · · →←→← · · ·). In Ref. [12] a
cylindrical octupole Halbach magnet is used where 32 blocks
are distributed uniformly over the perimeter and the direction
of magnetization advances by 56.25◦ from one block to the
next. In these systems the magnitude B of magnetic field
increases sharply near the magnetic wall. A superconducting
quadrupole system of magnetic UCN storage for a neutron
lifetime experiment is used in Ref. [15] while in Ref. [13] the
UCN are stored in superfluid helium using a Ioffe system with
horizontal electromagnetic quadrupole. For a quadrupole the
field magnitude increases linearly with radial distance from
the axis. At least one magnetic end cap is required for all
cylindrical systems; on the upper side of vertical systems
gravitational confinement can be used.

The field distribution for systems using permanent magnets
with magnetization direction advancing in steps from block
to block may be expressed as a Fourier series, as in Eq. (7)
of Ref. [14]. The first term of the expansion is dominant and
has the form (2) with constant B0 somewhat smaller than
Brem(1 − e−Kd ). For the planar quadrupole Halbach system
the reduction factor is 4/(π

√
2) = 0.900 . . . [14] and the field

in the lower half space y < −d no longer vanishes. The higher
Fourier components generate a ripple field in the (xy)-plane,

which is significant within ∼1 mm from the magnet surface
(and even induces a logarithmic divergence in the field gradient
within ∼1 μm). But this space is not accessible to the UCNs if
we choose a spectrum soft enough to ensure that all neutrons
approaching the magnet from above are reflected back up
before reaching the ripple zone. We use the value of 0.64 T for
the magnetic field at a safe distance 2 mm, which corresponds
to B0 = 0.82 T at the surface. Thus, for the Halbach array
generated field we assume the form (2) with B0 = 0.82 T and
strict confinement of the vector BH in the (xy) plane. We ignore
the small field ripple in the z direction considered in Ref. [14]
since it also decays strongly with distance from the magnet
surface. These small perturbations are not expected to affect
the depolarization results obtained below in a significant way.
Our value of B0 is ∼20% lower than the design value of [14]
to take into account partial demagnetization, over time, of the
NdFeB permanent magnets exposed to large fields.

A common feature of the various magnetic UCN storage
schemes is the requirement of a bias field B1 perpendicular
to the main field. It ensures that the field magnitude B =
|BH + B1| exceeds a certain minimum value everywhere in
the storage volume, especially at critical positions where the
field rotates fast in the neutron’s moving reference frame. The
main purpose of the present work is to provide an estimate
of this minimum field for typical field parameters, as those
in Ref. [14] where the field B1 also serves the purpose of
guiding the decay electrons out of the storage space to a
detector as a way to monitor the neutron decay rate in real
time. B1 is generated by a toroidal electromagnet, and it
is oriented along the longitudinal direction of the “bathtub
surface” which corresponds to the z direction in our model
with a planar, rather than curved Halbach magnet. We use
the same y dependence as in Ref. [14], B1 = ẑB10ρ/(ρ − y)
with ρ = 1.5 m. The magnitude of B1, B1 = B10ρ/(ρ − y) is
uniform on a horizontal plane, and since the Halbach field
magnitude BH is uniform for given height y no horizontal
force acts on the stored UCN.

In Ref. [14] a value of 0.05 to 0.1 T was proposed for
B10. We will consider field strengths down to the mT range
since this range seems to be closer to the bias field used in
Ref. [11]. In this latter work the value used was not given but
it was estimated, on the basis of the Majorana formula, that a
minimum field B1 of ∼0.001 T was required for their neutron
lifetime measurement.

Our analysis of the evolution of spin-flip probability for
UCNs moving in our model magnetic field distribution differs
from that of Ref. [14] as follows. It is not restricted to purely
vertical motion but assumes that the UCNs can also have
arbitrary horizontal velocity components vx and vz. vx and
vz are constant since neither gravity nor the net magnetic field
B = BH + B1 of our model exert a horizontal force on the
neutron. As noted earlier, both BH and B1 are uniform at given
height y, and BH is perpendicular to B1, thus B =

√
B2

H + B2
1

depends on y only. As a result, the magnetic force, which is
determined by the gradient of B, has no horizontal components
and the equation of motion is separable in three dimensions.

We use three different methods of analysis, both for purely
magnetic confinement of UCNs with arbitrary 3D velocity
components, and for a system involving a nonmagnetic mirror
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placed into our model magnetic field distribution: (a) in Sec. III
a quantum approach using the WKB approximation, (b) in
Sec. IV a quasiclassical approximation, and (c) in Sec. V
direct numerical integration of the equations of motion. In the
quantum approach the stationary spin-dependent Schrödinger
equation is solved using the WKB approximation, extending
the method of Ref. [14] to 3D motion. The semiclassical
Majorana method [18] which was adapted to magnetically
confined UCNs in Ref. [14] will also be extended to 3D.
Using both methods we will also analyze UCN reflection
on a nonmagnetic mirror in a magnetic field. In Sec. V
we will show that some analytic results can be obtained as
well by direct numerical integration of the wave equation
for the spin-flipped component of the wave function. This
is only feasible because the magnetically trapped UCNs have
relatively long wavelengths, in the μm range, so the number of
wave oscillations for the entire integration path is not too large.

III. QUANTUM MECHANICAL APPROACH

A. Basic equations

The wave function for a UCN moving in the magnetograv-
itational field of the trap is a linear superposition of the two
eigenstates of the magnetic moment interaction Hamiltonian

Hm = −μnσ · B, (3)

where μn = −1.913μN is the neutron magnetic moment in
terms of the nuclear magneton μN = 0.505 × 10−26 J/T, σ

is the Pauli spin operator, and B is the local magnetic field.
The two eigenstates χ+ and χ− of Hm satisfy the eigenvalue
equations

Hmχ± = ±|μn|Bχ± (4)

and correspond, respectively, to neutron spin parallel to B
with spin energy +|μn|B, and to antiparallel spin with energy
−|μn|B. These spin eigenfunctions are obtained by spin rota-
tion from the z axis to the direction of B through angles θ and
φ. The polar field angle is θ = cos−1(Bz/B) = sin−1(Bxy/B),
where Bz = B1 is due to the bias field B1 and Bxy = BH is
the magnitude of the Halbach field BH . The azimuthal angle
in the (xy) plane is φ = sin−1(By/Bxy) = tan−1(By/Bx).

Equation (2) shows that for the Halbach field configuration

φ = −Kx. (5)

Thus φ depends only on x (not on y or z), while θ depends only
on y. These properties will simplify the analysis considerably.
Exact correspondence between the system of coordinates
x, y, z used here and the system η, ζ, ξ used in Ref. [14] (with
ζ pointing up) is established if we add the constant π/2 to the
right-hand side of Eq. (5).

Performing the spin rotation through angles θ and φ we
obtain for the spin basis vectors [22] with quantization axis
along −B

χ+ =
(

e−s

−c

)
, χ− =

(
c

e+s

)
, (6)

where s = sin(θ/2), c = cos(θ/2), and e± = exp(±iφ) =
exp(∓iKx). We chose the basis vectors in the form (6) to

establish formal correspondence with the basis vectors used
in Ref. [14]. This entails a change of sign for θ , φ and K in
intermediary results for wave amplitudes, affecting only their
phases but not the final results for depolarization probabilities.
We write the dependence of the wave function on position
and spin in the form

χ = α(3)(x, y, z)χ+ + β(3)(x, y, z)χ−, (7)

where we have used the superscript (3) to indicate that
α(3)(x, y, z), β(3)(x, y, z) are functions of the three space
coordinates while the corresponding functions α(y) and β(y),
introduced below, depend on y only. χ satisfies the eigenvalue
equation

Eχ =
[
− h̄2

2m
∇2 + mgy + |μn|σ · B

]
χ (8)

for a neutron of mass m with constant total energy E moving in
a uniform gravitational field of magnitude g and a nonuniform
magnetic field B. Using subscripts to denote partial differen-
tiation, the Laplace operator acting on the wave function gives

∇2χ = (
α(3)

xx χ+ + 2α(3)
x χ+

x + α(3)χ+
xx + β(3)

xx χ−

+ 2β(3)
x χ−

x + β(3)χ−
xx

) + (x → y) + (y → z), (9)

where for the second and third term the indicated permutations
are performed. The basis vectors for quantization along the
fixed z axis can be expressed in terms of the basis vectors χ+
and χ−:(

1
0

)
= se+χ+ + cχ−,

(
0
1

)
= −cχ+ + se−χ−. (10)

Using Eq. (10) and noting that, from Eq. (5), φx = −K ,
φxx = 0, φy = φz = 0 and also θx = θz = 0, we obtain

χ+
x = isK(sχ+ + ce−χ−), χ−

x = isK(ce+χ+ − sχ−),

χ+
xx = iKχ+

x , χ−
xx = −iKχ−

x , χ+
y = 1

2e−θyχ
−,

χ−
y = − 1

2e+θyχ
+, χ+

yy = 1
2

(
θyye−χ− − 1

2θ2
y χ+)

, (11)

χ−
yy = − 1

2

(
1
2θ2

y χ− + θyye+χ+)
,

χ±
z = 0, χ±

zz = 0.

As in Ref. [14] we will use the WKB approximation [23] and
keep only those terms in Eq. (9) that contain the derivatives
of the field variables (θ and φ) in lowest order since those
change on the scale of centimeters while the waves in real
space, α(3) and β(3), vary on the micrometer scale, i.e., ∼104

times faster. This implies that all second derivatives of χ+
and χ− are dropped, along with other small terms. (Using the
numerical integration described in Sec. V we have performed
test runs where the small terms were retained. The results
were the same within the precision of numerical integration.)
Assuming that the UCN started out from a pure (+) spin state
and keeping only the dominant terms in Eq. (9) we obtain

∇2χ = (
α(3)

xx + α(3)
yy + α(3)

zz

)
χ+ + [

β(3)
xx + β(3)

yy + β(3)
zz

+ eiKx
(
θyα

(3)
y + iKα(3)

x sin θ
)]

χ−, (12)

where we have used sin θ = 2sc, φ = −Kx, and the fact
that in practice |β(3)| � |α(3)|. The functions in real space
multiplying χ+ and χ− can be simplified by noting that the
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x and z dependence of α(3) has the plane wave form eikxxeikzz

and β(3) is proportional to eiKxeikxxeikzz. The wave numbers
kx and kz are constant and eiKx represents a Bloch-wave
modulation due to the periodicity of the Halbach field. In
practice, kx and kz are of order μm−1, thus much larger than
K and θy , both of which are of order cm−1.

Thus we can factor Eq. (12) in the form

∇2χ = eikxxeikzz
{[

α′′ − (
k2
x + k2

z

)
α
]
χ+ + eiKx

[
β ′′

− (
k2
x + k2

z

)
β + (θ ′α′ − Kkxα sin θ )

]
χ−}

, (13)

simplifying the notation. In Eq. (13) and henceforth, α(y) and
β(y) stand for the y-dependent parts of the wave function only,
and differentiation with respect to y is denoted by primes. We
also drop the subscript y from the y-component of the wave
vector. Thus, α(3)(x, y, z) = α(y)eikxxeikzz and β(3)(x, y, z) =
β(y)eiKxeikxxeikzz. The terminology α(y), β(y) conforms to
that used in Ref. [14] where motion in horizontal directions
was not taken into account in the depolarization calculations.

Inserting Eq. (13) into the eigenvalue equation (8) gives [14]
two coupled equations, one for spinor χ+ (i.e., for low-field
seeking UCNs with spin parallel to B, which can be stored)
and the other for χ− (i.e., for the fraction of UCNs whose spin
has flipped relative to B and which therefore can escape from
the trap; the probability of flipping twice is negligible):

Eα = − h̄2

2m

[
α′′ − (

k2
x + k2

z

)
α
] + mgyα + |μn|Bα (14)

and

Eβ = − h̄2

2m

[
β ′′ − (

k2
x + k2

z

)
β + (θ ′α′ − Kkxα sin θ )

]
+mgyβ − |μn|Bβ. (15)

In the framework of the WKB approximation, the solution of
Eq. (14) is [14]

α(y) = k
−1/2
+ (y) exp(±i�+(y)), (16)

where

h̄2k2
±(y)

2m
= E − h̄2

2m

(
k2
x + k2

z

) + mg(y0 − y) ∓ |μn|B(y).

(17)

k+(y) is the magnitude of the y component of local wave vector
for the storable (+) spin state (parallel to B) and k−(y) is that
for the (−) spin state.

In Eq. (17), y0 is the greatest height a neutron of energy E

and given kx and kz would achieve in the gravitational field if
the magnetic field were switched off. In Eq. (16),

�+(y) =
∫ y

ys

k+(u)du (18)

is the phase angle, for the + spin state, accumulated between
the start of vertical motion and the position y. The initial height
ys for motion upward is assumed to be that of the lower turning
point, thus ys+ = yl , and for motion downward the initial level
is taken at the upper turning point, ys− = yu. The additional
+ or − sign in the argument of the exponential function in
Eq. (16), in front of �+, refers to this direction of the motion;
plus for upward and minus for downward, as in [14].

The WKB wave function (16) is normalized to a constant
particle flux h̄/m in the y direction. For the spin-flipped UCNs,
the flux in the y direction is the measure of the probability
of depolarization, as shown below. At the classical turning
points, where k+ = 0, the WKB form (16) diverges and has to
be replaced by the Airy function, as shown in Ref. [14], but
the WKB form is still valid almost all the way to the turning
point, except for the last μm or so, since it correctly represents
the asymptotic behavior of the Airy function in this region.

This is an important feature of the approximation used in
Ref. [14] and in the present work. It is made more explicit
as follows: The asymptotic form of the Airy function in the
region of real waves (rather than the exponentially decaying
wave on the other side) is [14,24]

Ai(−as |y − ys |) ∼
(

as

πks

)1/2

cos

(
ks |y − ys | − iπ

4

)

= 1

2

(
as

πks

)1/2 {
exp

(
iks |y − ys | − iπ

4

)

+ exp

(
−iks |y − ys | + iπ

4

) }
. (19)

The wave number ks = m
h̄

(2g+s)1/2|y − ys |1/2 is determined
by the local acceleration g+s = |g + ( |μn|

m
)( dB

dy
)s | at the turning

point ys , and as = (m
h̄

)2/3(2g+s)1/3. For upward motion the
WKB wave approximation (16) for α(y), which is valid
between the turning points, is matched to the first term inside
the braces of Eq. (19), and for downward motion to the second
term by adjusting the constant multiplying the Airy function.

It follows from Eq. (15) that the wave function β(x, y) for
the spin flipped component is determined by the inhomoge-
neous second-order differential equation

β ′′(y) + k2
−(y)β(y) = −θ ′(y)α′(y) + Kkxα(y) sin θ (y). (20)

Having separated off the x and z dependences allows us to
choose the same WKB form for β(y) as in Ref. [14]:

β(y) = k
−1/2
− (y) exp(±i�−(y))f (y), (21)

where the function f (y) modulating the WKB wave represents
the amplitude of spin flip. Apart from the modulation f (y),
β(y) is constructed in the same way as α(y). The phase
accumulated since the start at a turning point,

�−(y) =
∫ y

ys

k−(u)du, (22)

always has a larger magnitude than the phase �+(y) for α(y)
since k− is greater than k+ (except in zero magnetic field).

Summarizing, the governing equation for β(y) is the
second-order differential equation

β ′′(y) + k2
−(y)β(y)

= −θ ′(y)α′(y) + Kkxα(y) sin θ (y)

= −[±ik+θ ′(y)−Kkx sin θ (y)]α(y), (23)

where the right-hand side represents an inhomogeneous term
and α(y) is given by Eq. (16) while β(y) has the form

β(y) = k
−1/2
− (y) exp

(
±i�−(y)

)
f (y). (24)
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STEYERL, KAUFMAN, MÜLLER, MALIK, AND DESAI PHYSICAL REVIEW C 86, 065501 (2012)

In the second expression on the right-hand side of Eq. (23)
we have carried out the differentiation of α(y), using the
WKB rule of considering the slow-varying terms as constant,
with the result α′ = ±ik+α(y) where the “ + ” sign applies to
upward motion and the “−” sign to downward motion. This
replacement is valid except within a few μm of the turning
points.

Our Eq. (23) is the same as Eq. (28) of Ref. [14] except
for the additional, kx dependent term on the right-hand
side. It is present because we include motion with finite
lateral momentum h̄kx , whereas the analysis in Ref. [14] was
restricted to the special case kx = 0. We will show that this new
term makes the major contribution to UCN depolarization in
magnetic storage. We also note that Eq. (23) does not depend
on kz, thus motion exactly along the z direction does not induce
depolarization. This is understandable since neutrons moving
along the z axis during the short periods of horizontal motion at
the turning points move in a uniform B-field. On the other hand,
in motion along the x direction they are exposed to the strong
field ripple due to the rotating Halbach field. These features are
expected to hold, on a qualitative basis, also for the “bathtub
system” of Ref. [14], where the direction perpendicular
(parallel) to the curved Halbach array corresponds to our z axis
(x axis).

Next we will solve Eq. (23) to obtain the depolarization rate
for UCN storage in our model field distribution.

B. Depolarization in magnetic storage

1. Mathematical approach

We will first consider a neutron of given energy and fixed
values of kx and kz, moving downward from the upper turning
point yu. Using the WKB rule, the second derivative β ′′ is
obtained from Eq. (24) as

β ′′(y) = k
−1/2
− (y) exp(−i�−(y))(f ′′ − 2ik−f ′ − k2

−f ).

(25)

Inserting β ′′(y) and α(y) from Eq. (16) into Eq. (23) gives

f ′′ − 2ik−f ′ = [iU (y) + V (y)] exp(−i�(y)), (26)

where � = �+ − �−, U (y) = (k+k−)1/2θ ′, and V (y) =
( k−
k+

)1/2Kkx sin θ .
Defining a function F (y) through f ′ = F exp(2i�−) we

obtain from Eq. (26)

F ′(y) = [iU (y) + V (y)] exp(−i�(y)), (27)

where � = �+ + �−. The phases �+,�−,� and � are fast-
varying quantities, while the field variables U and V vary
slowly with y and will therefore be considered constant in all
differentiations. In integrations, as needed to obtain F (y) from
Eq. (27), this “WKB rule” directly corresponds to performing
the integral of products of slow- and fast-varying terms by parts
and neglecting the second term which contains the derivative
of the slow-varying factor. It has been shown numerically in
Ref. [14] that for the parameters of magnetic UCN storage at
hand this procedure gives approximations with precision in the

range 10−4. Thus we obtain from Eq. (27)

F (y) =
∫ y

ys

[iU (y ′) + V (y ′)] exp(−i� ′)dy ′

=
∫ �

�s

iU (y ′) + V (y ′)
k− + k+

exp(−i� ′)d� ′

= i[iU (y) + V (y)]

k−(y) + k+(y)
exp(−i�(y)). (28)

The third step in Eq. (28) is an integration by parts, where only
the leading term is kept.

The lower limit of the y integration in Eq. (28) is the upper
turning point. Carrying out the integration in the last step of
Eq. (28) we should expect a contribution from this lower limit
of integration (ys ≈ yu or �s ≈ 0). However, such a term does
not appear in Eq. (28) for the following reasons: First we
note that in the quantum treatment involving the Airy function
the turning “point” is blurred within a range of order μm.
Second, as mentioned in Sec. I, we assume, as the authors of
Ref. [14] did, that at a turning “point” (here the region around
yu) the neutron starts out in a pure low-field seeking spin state
( + ), i.e., from β = 0, f = 0. This implies that α(y) and the
functions β(y), f (y) and F (y), derived from α and α′ through
Eq. (23), tend to 0 as y → +∞ (in practice, for y just a few
μm above the classical turning point). It was also mentioned
earlier, that the WKB function used here for α(y) is just the
asymptotic representation of the Airy function Ai which does
satisfy the initial condition without any constant added since Ai
and Ai′ vanish for y → +∞. As a result, there is no lower-limit
contribution to F in Eq. (28), and the same is true also for the
functions f (y) and β(y) derived below by further integration
[in Eqs. (29) and (32)]. We can also argue that, due to the
factor k

−1/2
+ (y) in V (y) [defined following Eq. (26)], a wave

containing a term derived from a finite integration constant in
Eq. (28) would diverge at the endpoint yl of integration, where
k+ = 0, and therefore must be zero, in the same way as in total
reflection a wave increasing exponentially inside the medium
must have amplitude zero. The singularity is avoided only by
setting the integration constant in Eq. (28) equal to zero.

Remembering the definition F = f ′ exp(−2i�−), we inte-
grate Eq. (28) once more to obtain

f (y) =
∫ y

ys

F (y ′) exp(2i�′
−)dy ′

= i

∫ y

ys

iU (y ′) + V (y ′)
k− + k+

exp(−i�′)dy ′

= −i

∫ �

�s

iU (y ′) + V (y ′)
k2− − k2+

exp(−i�′)d�′

= P (y) exp(−i�). (29)

In Eq. (29), we have defined

P (y) = iU (y) + V (y)

W (y)
,

(30)
W (y) = k2

−(y) − k2
+(y).
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It follows from the definition of k+ and k− in Eq. (17) that

W = k2
− − k2

+ = 4m

h̄2 |μn|B(y) (31)

depends only on the magnitude B(y) of the local magnetic
field.

From the symmetry of the problem it follows that motion
in the opposite direction, from the lower turning point at yl

upward to yu gives the same function f (y) as in the last
form of Eq. (29), except that the phase term exp(−i�) is
replaced by ξ exp(+i�) and P (y) is replaced by its complex
conjugate P ∗(y). ξ is a phase factor of unit amplitude, which
arises due to the shift of reference point for � from yu to yl

when we change from downward to upward motion. None of
these differences affect the squared magnitude |f (y)|2 which
measures the probability to find the neutron in the spin-flipped
state at height y. An explicit expression for ξ will be given
following Eq. (44).

We can compare our Eq. (29) for the depolarization
amplitude f with the corresponding result in Eqs. (31)–(35)
of Ref. [14], where only the case kx = 0 was analyzed. This
corresponds to setting V (y) = 0 in our analysis. Apart from
this difference, our Eq. (29) can be obtained from Eq. (35)
of [14] by multiplying the latter by the factor 2ik+/(k− + k+).
The magnitude of this factor is close to unity if k+(y) is only
slightly less than k−(y). For fairly high-energy UCNs this is
the case for most of the path between the turning points, but
not near these points. This minor difference appears to be due
to the neglect, in Ref. [14], of f ′′ in the derivation of their
Eq. (31).

The main difference between the results of [14] and our
numbers, obtained below, is due to the restriction of the
previous work to kx = 0. Our analysis of the depolarization
current and depolarization rate for magnetically stored UCNs
yields a loss ∼10 decades larger for a typical velocity vx up
to ±3 m/s than the range of values, 10−20 to 10−23 given in
Ref. [14] for vx = 0.

2. Interpretation in terms of loss current and depolarization rate

We can now insert f (y) from Eq. (29) into Eq. (24) to
determine the wave function β(y) for spin-flipped UCNs. For
the downward motion, this gives

β(y) = k
−1/2
− (y)P (y) exp(−i�+(y)). (32)

The phase �+ (with the index +) indicates that this wave
for the (−) spin state propagates, not with wave number k−,
but with the same wave number k+ as the ( + ) spin state,
as it should. Using β ′′(y) = −k2

+(y)β(y) we can verify that
the function (32) solves Eq. (23), and thus the Schrödinger
equation starting from a pure ( + ) spin state, as described
following Eq. (28).

On a more formal basis, Eq. (32) represents a particular
solution to Eq. (23) and we could add to Eq. (32) any solution
βh±(y) of the homogeneous equation β ′′

h (y) + k2
−(y)βh(y) = 0

corresponding to Eq. (23). In the WKB framework, these so-
lutions are βh±(y) = C±k

−1/2
− (y) exp(±i�−(y)) with arbitrary

constants C±. These functions represent a constant current in
the upward (downward) direction for the + (−) sign. Thus
the same current enters and leaves the storage space, resulting
in a zero contribution to the net flux out which corresponds
to the depolarization loss as described below. As an example,
such a homogeneous term may represent a neutron that has
undergone a spin flip on the way up, proceeds past yu until it
reaches its reversal point in the gravitational field and, on its
way down, traverses the storage space without contributing to
further depolarization.

Reverting to solution (32) without added terms, we asso-
ciate the net depolarization over the path from upper turning
point yu to yl with the current of spin-flipped UCNs at the
endpoint yl , which is consistent with the interpretation in
Ref. [14]. This current represents the net flux out of the storage
space since no flux enters at yu.

At an arbitrary position y along the way the current j−(y)
is given by [22]

j−(y) = h̄

m
Re

[
iβ∗(y)

(
dβ

dy

)]
. (33)

For function (32) we have

β∗(y) = k
−1/2
− (y)P ∗(y) exp(i�+(y)),

dβ

dy
= −ik+(y)k−1/2

− (y)P (y) exp(−i�+(y)),

and thus the current as a function of position y between yl and
yu becomes

j−(y) = h̄

m

(
k+
k−

)
|P |2 = h̄

m

k2
+θ ′2 + K2k2

x sin2 θ

(k2− − k2+)2
. (34)

The function (m/h̄)j−(y) corresponds to the depolarization
probability of Ref. [14]. It is plotted in Fig. 2 for UCNs with
energy for vertical motion determined by the “drop heights”

FIG. 2. (Color online) Depolarization probability, given by
Eq. (34) multiplied by m/h̄, as a function of neutron position for
drop heights y0 = 450 mm and 100 mm, stabilization field parameter
B10 = 0.005 T, and neutron velocity component vx = 3 m/s or zero.
The sharp peak occurs in the region where the gradient of field angle
θ is largest.
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y0 = 10 cm and 45 cm [y0 was defined following Eq. (17)],
a bias magnetic field B10 = 0.005 T and vx = 3 m/s. As in
Fig. 3 of Ref. [14] we see a sharp peak at the y position where
θ ′ is large, and a decrease as the particle drops further down.
The third curve in Fig. 2 is for y0 = 45 cm, B10 = 0.005 T,
and vx = 0. The peak value and the decrease on the upper side
are quite similar. Below the peak position the curve for vx =
0 decreases faster than for vx = 3 m/s.

The current leaving the storage space at y = yl is

jl = h̄

m

(
k+l

k−l

)
|Pl|2 = h̄

m

k2
+lθ

′
l
2 + K2k2

x sin2 θl(
k−l

2 − k2
+l

)2

= h̄

m

K2k2
x

k4
−l

sin2 θl, (35)

where the index l refers to the values at y = yl and the last form
of Eq. (35) uses the fact that k+ vanishes at the turning points.
In the analysis of Ref. [14] for kx = 0 only this vanishing
term (∼k2

+lθ
′
l
2) appeared, and a higher order of approximation

as well as numerical integration were used to estimate the
depolarization probability. The result was a very small value
which is negligible compared to the second term given in the
last form of Eq. (35), even for values of vx as small as 0.1 m/s.

The dependence of Eq. (35) on the primary field variables
is established by noting that sin2 θ = B2

H/B2, k4
−l ∼ B2

l and
K2k2

x = (m
h̄

)2ω2, where ω = 2πvx/L is the frequency of the
Halbach field as seen by the moving UCN.

For upward motion from yl to yu we get the same result for
the current as in Eq. (35) except that all indices l are replaced
by u, i.e., the quantities relevant for the spin-flipped current
leaving the system at the upper turning point are determined
by the field angle θu and by k−u at yu.

The combined depolarization loss for one reflection on the
magnetic field, i.e., for one complete round trip down and up,
is determined by

m

h̄
(jl + ju) = K2k2

x

(
sin2 θl

k4
−l

+ sin2 θu

k4−u

)
. (36)

To approximate the actual situation in magnetic UCN storage,
where the UCNs have positive and negative velocities in
any direction and, for a low-energy Maxwell spectrum, with
uniform probability per unit of kx, ky , and kz (since the phase
space density is constant), we take the mean value of k2

x in
Eq. (36) for the spectral interval −kx,max < kx < +kx,max with
the result

m

h̄
〈jl + ju〉 = K2

(
k2
x,max

3

) (
sin2 θl

k4
−l

+ sin2 θu

k4−u

)
. (37)

As a final step in this analysis of depolarization in the WKB
approximation we establish the explicit connection between
the loss current (37) and the rate of depolarization, τ−1

dep, that is
observable as a contribution to the decay rate (but should be
negligible compared to the neutron β-decay rate in a neutron
lifetime measurement). For given neutron energy for vertical
motion, i.e., fixed turning levels at yl and yu, the depolarization
rate (in s−1) is determined by the loss current (37) divided by
the number of UCNs in the field-repelled spin state present in

the trap,

N = 2
∫ yu

yl

|α(y)|2dy = 2
∫ yu

yl

1

k+(y)
dy. (38)

We have used the square magnitude of the WKB form (16)
for α(y) as the density. The factor 2 takes into account that
both downward and upward moving UCNs are in the trap at
the same time.

Since k+ = (m/h̄)v+ and dy = v+dt , the expression in
Eq. (38) equals (h̄/m)T where T is the time required for one
round trip down and up. Thus, the depolarization rate is

τ−1
dep = 〈jl + ju〉

N
= m

h̄

〈jl + ju〉
T

= K2

(
k2
x,max

3

)(
sin2 θl

k4
−l

+ sin2 θu

k4−u

)
1

T
, (39)

where we have inserted Eq. (37) for the current in the last step.
This shows that the loss current (37) of spin-flipped UCNs is
the loss per round trip, i.e., for one bounce in the magnetic
field. This interpretation is consistent with the interpretation
in Ref. [14].

To compare to actual experiments storing polarized ( + )
UCNs in a broad velocity range in three dimensions, we have
to average Eq. (39) also over vz and vy . Averaging over vz is
trivial since Eq. (39) does not depend on vz.

Averaging over vy can be achieved as follows. As a
measure of vy for a stored UCN we could take its value
at any height within the confinement range, but the most
convenient choice of reference plane is the neutral plane at
y = y(n) where the gravitational force is compensated by the
magnetic force pushing upward, i.e., where |μn| dB

dy
= −mg.

This is the plane where the UCNs with the lowest energy
for vertical motion reside. In our field model, a UCN with
vertical velocity v(n)

y = 0 in the neutral plane floats or moves
along the plane at constant speed. In actual confinement
fields as in Ref. [14] they would follow closed or open paths
on the curved neutral surface. For small values of v

(n)
+ the

vertical motion is a classical harmonic oscillation with natural
frequency ω0 = ( dg+

dy
)1/2 where g+ = g + |μn|

m
dB
dy

is the net
downward acceleration. This implies that for small oscillations
about the neutral plane the time for a round trip becomes
T = 2π/ω0 = 2π ( dg+

dy
)−1/2. For larger vertical velocities the

oscillator potential is strongly anharmonic but the drop height
y0, used originally as a measure of energy for vertical motion,
is unambiguously determined by v

(n)
+ . Therefore, if we plot the

depolarization rate (39) versus v
(n)
+ , rather than y0, the mean

height of this curve in the range from v
(n)
+ = 0 to its maximum

value for the stored UCN spectrum directly gives the average
value of depolarization rate for a Maxwell spectrum. (The
trap loading process used in an actual experiment may induce
deviations from the Maxwell spectrum.)

Such a plot is presented in Fig. 3 where we have normalized
v

(n)
+ to v

(n)
−0, the y velocity for the spin-flipped state on

the neutral plane for v
(n)
+ = 0. v

(n)
−0 = 2( |μn|B(n)

m
)1/2 is solely

determined by the field magnitude B(n) on the neutral plane.
The parameters used are: y0,max = 45 cm, B10 = 0.005 T and
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FIG. 3. (Color online) Ratio between mean depolarization rate,
given by Eq. (39), and neutron β-decay rate (for a lifetime of 882s),
plotted as a function of vertical velocity component v

(n)
+ in the neutral

plane (where the gravitational and magnetic forces are balanced).
v

(n)
+ is normalized with the constant v

(n)
−0 which is determined by the

field magnitude in the neutral plane. The curve for B10 = 0.005 T
is plotted to scale (ν = 0) and the curve for B10 = 0.05 T is plotted
with magnification factor 101 (ν = 1). Their difference by about two
orders of magnitude shows the strong suppression of depolarization
by a stabilization field of sufficient strength. For a Maxwell spectrum,
the mean height of the curves over the range of the abscissa, from
0 to 2.5 for B10 = 0.05 T and from 0 to 4.7 for B10 = 0.005 T,
directly determines the average over the full spectrum (here for
−3 m/s < vx < +3 m/s and drop heights y0 up to 450 mm).

0.05 T, and vx,max = 3 m/s. For these parameters the mean
depolarization rate, normalized to the β-decay rate 1/τn, is
τn〈τ−1

dep〉 = 4 × 10−6 for B10 = 0.005 T and about two orders
of magnitude less for B10 = 0.05 T.

It might come as a surprise that the largest contribution
to the depolarization rate originates from UCNs with fairly
low energy of vertical motion. They move through the field
almost horizontally, with small vertical oscillations about the
neutral plane. The result is plausible since these UCNs spend
the largest fraction of time in the region where the field rotates
rapidly in the reference frame of the laterally moving neutron.

In Sec. IV B we will analyze the same problem of depolar-
ization in magnetic storage of UCNs using the semiclassical
method and compare the two approaches. Next we apply
the quantum approximation to analyze the depolarization in
reflection of polarized neutrons on a nonmagnetic mirror
immersed in a nonuniform magnetic field.

C. Reflection on a nonmagnetic mirror in a magnetic field

In Sec. I we mentioned two examples where the possible
depolarization of UCNs in total reflection from a nonmagnetic
wall, like copper, is of major importance: (a) UCN experiments
on spin anisotropy parameters in neutron decay, such as the
neutron-electron spin correlation coefficient A [20,21]; and (b)
UCN polarizers based on transmission through a high magnetic
field. Depolarization in mirror reflection has been investigated
theoretically in Ref. [17]. We will study aspects of this

y

virtual image of starting point

y

non−magnetic mirror

upper turning surface
reflectedincident

III

y

m

u

y II

yu
(v)

l lower turning surface

I

Starting
Point

FIG. 4. Geometry of nonmagnetic mirror conceptually placed
into the magnetic storage space at various levels ym between the
upper and lower turning surfaces at yu and yl for a given UCN energy
for vertical motion. The reflected spin-flipped wave consists of the
two components in Eq. (42): (a) the particular solution βp which is
the same as for a wave moving upward from the lower turning point at
II in the absence of the mirror; (b) the homogeneous wave βh induced
at the mirror surface by the wave incident from above, starting from
the upper turning level at point I. The position III of the virtual image
of I below the mirror determines a phase angle.

problem by imagining an ideal, non-magnetic mirror inserted
horizontally into our magnetic model field at various heights
ym, as shown in Fig. 4, and comparing the depolarization per
bounce on this mirror with that in the field without the mirror.
The reflecting mirror surface at ym lies between the upper and
lower turning points yu and yl for UCNs. We use index m to
denote the quantities at the reflecting mirror surface and have
assumed that the UCNs have given lateral velocities vx and vz

and a fixed energy for vertical motion.
An ideal UCN mirror has reflection amplitude R =

exp(−2i�) and reflectivity |R|2 = 1. The phase angle � =
cos−1(k+m/kc) depends on the limit kc of total reflection and,
for the system at hand, on the vertical component of incident
wave vector, k+m, which is the same for both wave components,
α and β. We will see that the depolarization at the mirror is
independent of �, i.e., it should be virtually the same for any
low loss (almost ideal) mirror material. On physical grounds,
no abrupt change of depolarization probability |β|2 is expected
since the dwell time of ∼ 10−8 s inside the wall is much shorter
than the Larmor precession period (1 μs for B = 34 mT) which
sets the time scale for any change.

Figure 4 shows the geometry. As in the previous sections,
we assume that the particle started out from an upper turning
level yu in a pure ( + ) spin state. On incidence at y = ym its
wave function has acquired a depolarized component given by
Eq. (32):

β(ym) = k
−1/2
− (ym)P (ym) exp(−i�+(ym)), (40)

where P has been defined in Eq. (30). The evolution of
β(y) following reflection is determined by the inhomogeneous
differential equation (23):

β ′′(y) + k2
−(y)β(y) = −[ik+θ ′(y) − Kkx sin θ (y)]α(y), (41)

where we replaced the ± sign in Eq. (23) by + since the
reflected wave is moving upward.
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The solution to Eq. (41) can be written as a superposition

β(y) = βp(y) + βh(y) (42)

of a particular solution, βp(y), and the general solution βh(y)
of the homogeneous equation

β ′′
h (y) + k2

−(y)βh(y) = 0. (43)

The amplitude multiplying βh(y) is adjusted to satisfy initial
conditions.

A particular solution βp for downward motion has been
given as Eq. (32). For the mirror-reflected beam we need the
corresponding solution for upward motion. It follows from the
discussion in Sec. III B1 that this particular solution is

βp(y) = ξk
−1/2
− (y)P ∗(y) exp(i�+(y)). (44)

The phase factor ξ = exp(−i�t ), with �t = ∫ yl

yu
(k+ − k−)dy,

arises as follows: For the mirror reflection problem we
choose a time axis with t = 0 at the upper turning point
yu and increasing as the motion proceeds. However, the
corresponding time t ′, chosen in Sec. III B1 for the upward
motion, starts from t ′ = 0 at yl (not from yu). The times
required to reach a given particle position are related through
t ′ = −t + T

2 , where, as before, T is the time for a round trip
down and up. The phase factor ξ arises due to this difference
in the time coordinates.

The homogeneous equation (43) has two solutions but only
one, βh(y) ∼ exp(+ik−m(y − ym)), corresponds to upward
wave propagation, as required for the reflected wave. The plane
wave form is valid only near the mirror surface where k−(y)
is considered constant on the scale of the neutron wavelength.
Thus, in the framework of the WKB approximation, we use
the homogeneous solution

βh(y) = Ck
−1/2
− (y) exp(+i�−(y)), (45)

where the constant C is to be adjusted to match the outgoing
wave (42) to the wave

βm = rk
−1/2
− (ym)P (ym) exp(−i�+(ym)) (46)

excited by the incoming beam. Expression (46) is the incoming
wave (32) multiplied by the phase factor r = R exp(−2i�−m)
where R is the reflection amplitude. The factor exp(−2i�−m)
is due to a shift of time scales similar to that defined following
Eq. (44) but now referring to mirror reflection with start from
the upper turning point yu versus start from its virtual image
at y(v)

u below the mirror surface, as shown in Fig. 4.
Now we match the outgoing wave βp(y) + βh(y) [from

Eqs. (44) and (45)] to the wave βm at the mirror surface ym

[from Eq. (46)] to determine the constant C, with the result

C = (βm − βpm) exp(−i�−m)

= [rPm exp(−i�+m) − ξP ∗
m exp(+i�+m)] exp(−i�−m).

(47)

Thus the mirror reflected wave becomes

β(y) = βp(y) + βh(y)

= k
−1/2
− (y){ξP ∗(y) exp(i�+(y))

+ [rPm exp(−i�+m) − ξP ∗
m

× exp(+i�+m)] exp(−i�−m) exp(i�−(y))}. (48)

The first term in the braces represents an outgoing wave with
wave number k+ and the second one with wave number k−. To
calculate the outgoing current we also need the derivative

dβ

dy
= k

−1/2
− (y){ik+ξP ∗(y) exp(i�+(y))

+ ik−[rPm exp(−i�+m) − ξP ∗
m exp(+i�+m)]

× exp(−i�−m) exp(i�−(y))}. (49)

The current propagating in the upward direction is obtained
from [22]

m

h̄
j+(y) = −Re

[
iβ∗(y)

(
dβ

dy

)]
, (50)

and the result is a sum of slowly varying terms representing
the measurable depolarization. There are also fast oscillating
terms with phase ±�(y) = ±[�+(y) − �−(y)] which would
be averaged to zero by a detector of spin-flipped UCNs except
within a narrow range of order 2π/(k−m − k+m), i.e., of a
few wavelengths above the mirror. With the same proviso,
mixed terms ∼ξr∗ (or ξ ∗r) can also be dropped since the phase
factors ξ and r depend sensitively on the exact position of the
mirror and the exact distance between upper and lower turning
points. In practice these quantities are blurred by geometrical
imperfections as well as the finite spread in UCN energy.
Thus ξ and r can be considered statistically independent of
one another. As a result we obtain for the measurable average
current〈

m

h̄
j+(y)

〉
= k+

k−
|P (y)|2 + 2|P (ym)|2

= (k+θ ′)2 + (Kkx sin θ )2

(k2− − k2+)2

+ 2

(
k−m

k+m

)
(k+mθ ′

m)2 + (Kkx sin θm)2(
k2−m − k2+m

)2 . (51)

To measure the depolarization per one complete bounce on
the mirror from upper turning point down and back up to the
upper turning point, we insert y = yu for the detector position
and obtain〈

m

h̄
j+(yu)

〉
=

(
Kkx

k2−u

sin θu

)2

+ 2

(
k−m

k+m

)
(k+mθ ′

m)2 + (Kkx sin θm)2(
k2−m − k2+m

)2 . (52)

This corresponds to expression (36) for one bounce in the
magnetic field. In Eq. (52) we have used k+u = k+(yu) = 0
and we note that in typical cases the first term in Eq. (52) is
negligible.

We have assumed that the UCNs are incident on the mirror
from above, i.e., are confined to the space ym < y < yu. If,
instead, they impinge from below at y = ym (now the lower
mirror surface) and are confined to the space yl < y < ym, the
expressions (51) and (52) (now for j−, not j+) remain the same
except that in Eq. (52) the index u is replaced by l.

We will discuss these results in greater detail in Secs. IV C
and VI.
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IV. SEMICLASSICAL APPROACH

A. Basic equations

The semiclassical Schrödinger equation describes the par-
ticle in time t , rather than in space coordinates. The particle is
assumed to follow a known classical path, so the field variable
B is considered a known function of t . We again choose the
quantization axis along the position-dependent direction of B,
for which the mutually orthogonal basis vectors χ+ and χ−
are given in Eq. (6) and the wave function for the ( + ) and (−)
state is

χ (t) = α(t)χ+(t) + β(t)χ−(t). (53)

But these quantities are now considered to be functions
of t , rather than of space variables. As before, the spin
flip probability |β(t)|2 is considered small compared to the
probability |α(t)|2 ≈ 1 to find the neutron in the storable ( + )
spin state.

In this approximation the Schrödinger equation reads [14]

ih̄
d

dt
(αχ+ + βχ−) = Hm(αχ+ + βχ−)

= |μn|B(αχ+ − βχ−), (54)

where the Hamiltonian Hm for spin interaction was given in
Eq. (3). We denote time derivatives by a dot and, using the
notation and relations of Sec. III A and from φ = −Kx, φ̇ =
vx

dφ

dx
= −vxK , obtain

χ̇+ =
((

isKvx + 1
2cθ̇

)
e−

1
2 sθ̇

)

= 1

2
(θ̇ + iKvx sin θ )e−χ− + iKs2vxχ

+ (55)

and

χ̇− =
(

− 1
2 sθ̇(

1
2cθ̇ − isKvx

)
e+

)

= −1

2
(θ̇ − iKvx sin θ )e+χ+ − iKs2vxχ

−. (56)

Inserting into Eq. (54) and keeping only the dominant
contributions we get for the terms with χ+

α̇ + iωL

2
α = 0 (57)

and for those with χ−

β̇ − iωL

2
β = −α

2
(θ̇ + iKvx sin θ )e−, (58)

where ωL = 2|μn|B/h̄ is the Larmor frequency. In practice,
ωL � Kvx . Equations (57) and (58) correspond to Eqs. (14)
and (15) of Ref. [14], but Eq. (58) contains the new phase fac-
tor e− = exp(−iφ) = exp(iKx) [as the quantum equivalent,
Eq. (12), does] and the term dependent on vx .

B. Depolarization in the magnetic field

Equation (57) is solved by

α(t) = exp

(
− i�

2

)
, (59)

where � = ∫ t

ts
ωL(t ′)dt ′ is twice the phase angle accumulated

since the start time ts . As for the quantum case, we assume that
the motion starts at the upper or lower turning point with ve-
locity vs = (vx, v+s , vz) = (vx, 0, vz), where vx = const. and
the constant z component vz does not induce depolarization for
our field model. v+s = v+(ts) = 0 implies θ̇ = 0 at the start.

As in Ref. [14], Eq. (58) is solved using the ansatz
β(t) = G(t) exp(i�/2), where G(t), the new measure of
depolarization amplitude [14], satisfies the relation

Ġ = − 1
2 (θ̇ + iKvx sin θ ) exp(−i�) exp(iKx). (60)

Since x = vxt the factor exp(iKx) = exp(iKvxt) is time
dependent and therefore ih̄ d

dt
exp(iKvxt) contributes to the

energy. However, as noted before, Kvx is much smaller than
ωL and can be neglected in the same way small terms are
neglected in the WKB approximation.

Equation (60) is readily integrated by parts:

G(t) =
∫ t

ts

Ġ(t ′)dt ′

= − i

2ωL

(θ̇ + iKvx sin θ ) exp(−i�) exp(iKx). (61)

As for the quantum analog (28) of Eq. (61), the right-hand side
of Eq. (61) does not include a term for the lower integration
limit ts . As we will see, this leads to results matching those of
the quantum approach. We again can argue, as in the discussion
of Eq. (28), that in view of the Airy-function character of the
actual wave solution around the turning region, the initial time
ts is a blurred quantity and the contribution from the lower limit
of integration averages to zero. But a rigorous justification may
be impossible within this semiclassical mix of ingredients as
incongruent as classical and quantum mechanics are.

We identify |G(t)|2 with the probability p of finding the
neutron in the spin-flipped state [14]

p = θ̇2 + K2v2
x sin2 θ

4ω2
L

= k2
+θ ′2 + K2k2

x sin2 θ

(k2− − k2+)2
. (62)

In the last step of Eq. (62) we have used ωL = h̄
2m

(k2
− − k2

+),

and θ̇2 = v2
+( dθ

dy
)2 = ( h̄

m
)2k2

+θ ′2, since in our field model θ

depends only on y.
The result (62) agrees with Eq. (34) for the function

(m/h̄)j− which had also been identified as the depolarization
probability. Therefore we have full agreement also for the
mean depolarization per bounce (37) and for the depolarization
rate given in Eq. (39).

In the next section we will see that the semiclassical and
quantum approaches do not always produce exactly the same
results, although a strong correlation between the two will be
found also in this case.
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C. Reflection from a nonmagnetic mirror in a magnetic field

The semiclassical analysis of the mirror problem follows the
same path as for the quantum case analyzed in Sec. III C. The
crucial step again is matching the superposition of particular
plus homogeneous solution for the ascending reflected beam,

β(t) = βp(t) + βh(t), (63)

to the wave βm induced by the incident beam at the mirror
surface at t = tm.

In Eq. (63), βh = C exp(−i�
2 ) is the general solution of the

homogeneous equation β̇h + iωL

2 βh = 0, which corresponds
to the inhomogeneous equation (58) with the direction of
time reversed as described following Eq. (44). Using the same
sequence of terms as in Eq. (63) and the notation of Sec. III C,
the matching condition β(tm) = βp(tm) + βh(tm) reads

iζ1

2ωLm

(θ̇m − iKvx sin θm) exp

(
+ i�m

2

)

= iζ2

2ωLm

(θ̇m − iKvx sin θm) exp

(
+ i�m

2

)

+C exp

(
− i�m

2

)
, (64)

where we have divided out the common factor exp(−iKvxtm).
ωLm is the Larmor frequency at the mirror position and ζ1, ζ2

are statistically independent unitary phase factors similar to
their quantum analogs ξ , r in Eqs. (44) and (46). Solving for
the constant C of the homogeneous term and inserting into
Eq. (63) gives

β(t) = exp(−iKvxt)

[
i

2ωL

(θ̇ − iKvx sin θ ) exp

(
+ i�

2

)

+ (ζ1 − ζ2)

(
i

2ωLm

)
(θ̇m − iKvx sin θm)

× exp(+i�m) exp

(
− i�

2

) ]
. (65)

Finally, taking the square magnitude of Eq. (65) and
performing the same statistical averaging as for Eq. (50), which
includes setting 〈|ζ1|2〉 = 〈|ζ2|2〉 = 1 and 〈ζ1ζ

∗
2 〉 = 0, we find

for the probability of depolarization

p(t) = 〈|β(t)|2〉 = 1

4ω2
L

[θ̇2 + (Kvx sin θ )2]

+ 1

2ω2
Lm

[
θ̇2
m + (Kvx sin θm)2] . (66)

To facilitate comparison with the quantum result (51) we
convert from time to space dependent variables (θ̇ → θ ′ =
dθ
dy

), as for Eq. (62), and obtain

p(t) = (k+θ ′)2 + (Kkx sin θ )2

(k2− − k2+)2

+ 2[(k+mθ ′
m)2 + (Kkx sin θm)2](
k2−m − k2+m

)2 . (67)

This is the same expression as Eq. (51) except that the factor
k−m/k+m for the second term on the right-hand side is missing.

FIG. 5. (Color online) Normalized depolarization as a function
of mirror position ym. We use Eq. (52) for the quantum treatment
(QM) and Eq. (68) for the semiclassical approach. The plotted values
are normalized by dividing Eq. (68) by Eq. (36), the depolarization
due to the field alone, and by the ratio of duration of one bounce
with and without the mirror. This figure shows a strong enhancement
of depolarization due to the mirror. The enhancement factor depends
on incident UCN energy (which increases with larger fall height y0)
and on the gradient θ ′

m of field angle θ at the mirror position. θ ′
m is

largest in the region where the curves have their peak value which
is of order 104 for vx = 3 m/s. For the examples shown, the turning
point levels are: yu = 96.86 mm, yl = 14.31 mm for y0 = 100 mm,
and yu = 445.82 mm, yl = 0.58 mm for y0 = 450 mm.

Except for very low energy UCNs hovering in the magnetic
field, and for mirror position at a turning point, this factor is
close to 1.

For a complete bounce on the mirror, starting from, and
ending at, the upper turning point level yu we obtain

p = (Kkx sin θu)2

k4−u

+ 2[(k+mθ ′
m)2 + (Kkx sin θm)2](
k2−m − k2+m

)2 . (68)

Figure 5 shows the depolarization per bounce on the mirror
in our model field as a function of mirror position ym. For the
quantum treatment (QM) this probability is given by Eq. (52)
and for the semiclassical approach (CL) by Eq. (68). To
separate the role of the nonmagnetic mirror in the field from the
depolarization due to the field alone we have divided Eq. (68)
by Eq. (36), the depolarization due to the field alone, and by
the ratio of duration of one bounce with and without the mirror.
Figure 5 shows a strong enhancement due to the mirror. The
enhancement factor depends on incident UCN energy (which
increases with larger fall height y0) and on the gradient θ ′

m of
field angle at the mirror position. θ ′

m is largest in the region
where the curves have their peak. The enhancement reaches
four orders of magnitude for y0 = 0.45 m and vx = 3 m/s, and
six decades for vx = 0.3 m/s. In the latter comparison, the role
of lateral velocity component vx appears so large because the
depolarization in the field alone vanishes for vx = 0 in our
approximation (36) (and is negligibly small in higher-order
approximations [14]), while the mirror depolarization remains
finite for vx = 0.
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The quantum and semiclassical results, compared for
identical parameters by the dashed and dash-dotted curves
in Fig. 5, are quite similar. For the given parameters they
differ by a few percent at most if we exclude the range within
∼5 mm from a turning point.

As for the quantum approach, the results (67) and (68)
remain the same [except for the index u in Eq. (68) changing
to l] if incidence on the mirror from above is replaced by
incidence from below, with start from the lower turning point
yl rather than from yu.

In the next section we will show that for low UCN energies
these analytical results can also be obtained by numerical
integration of the basic differential equation. Numerical in-
tegration does not rely on the WKB approximation. However,
the lengthy integration over many oscillations of the wave
function is plagued with the rounding errors and the error
due to the finite step size. Reasonable agreement of the
two methods would be an indication that the results are
reliable.

V. NUMERICAL INTEGRATION

A. Magnetic confinement

The equation of motion of the wave function β(y) for spin
flip is given by the second-order inhomogeneous differential
equation (23),

β ′′(y) + k2
−(y)β(y) = −[±ik+θ ′(y) − Kkx sin θ (y)]α(y),

with Eq. (16)

α(y) = k
−1/2
+ (y) exp(±i�+(y))

and the + (−) sign refers to motion upward (downward).
Using the fourth-order Runge Kutta process, Eq. (23) may be
integrated numerically, starting from an initial point yi slightly
above (below) the turning point ys . Key is the suitable choice
of initial values β(yi) and β ′(yi).

We choose the WKB solution which is given by Eq. (32)
for downward motion. Its extension to include also the upward
path reads

β(y) = k
−1/2
− (y)P±(y) exp(±i�+(y)) (69)

with derivative

β ′(y) = ±ik+(y)k−1/2
− (y)P±(y) exp(±i�+(y)), (70)

where P−(y) = P (y) and P+(y) = P ∗(y). P (y) has been
defined in Eq. (30). As discussed following Eq. (19), near
a turning point ys Eq. (69) is based on the asymptotic form of
the Airy function wave solution α(y) = C1Ai(−as |y − ys |),
where the coefficient C1 = 2(±iπ/as)1/2 is adjusted to match
Eq. (16) asymptotically. The constants g+s and as were defined
following Eq. (19). Since g+ varies slowly, the constant value
g+s is a good approximation over hundreds of oscillations of
the Airy function, starting from y = ys .

Using initial values Eqs. (69) and (70), Eq. (23) may
be integrated numerically up to a point slightly before the
next turning point, ys,next, is reached. The method fails at
ys,next itself due to the divergence of k

−1/2
+ . We calculate the

FIG. 6. (Color online) Depolarization current for downward
motion in the magnetic field for parameters y0 = 8 cm, B10 = 0.05 T,
and vx = 3 m/s. Direct numerical integration, represented by the solid
curve, coincides with the analytic result shown by the dashed curve,
with a maximum deviation of 1% over the entire range from upper to
lower turning point (yu = 49.56 mm, yl = 18.08 mm).

current (m/h̄)j (y) = ±Re[β∗(y)β ′(y)/i] at every point along
the integration path and Fig. 6 shows the result of downward
integration for parameters y0 = 8 cm, B10 = 0.05 T, vx =
3 m/s and starting point at |yi − ys | = 10/as . We have tested
that the solution is stable in a wide range of initial position
from as |yi − ys | ∼2 to 20.

Figure 6 shows that the numerical result coincides with
the analytical solution (69), with maximum deviations of
∼1% over the entire range including the far endpoint yl . This
consistency at the lower turning point is vital since the current
leaving there from the storage space is identified with the
depolarization probability for the move from top to bottom.
To be specific, this depolarization probability (m/h̄)j−(yl)
is obtained by extrapolating the numerical solution over the
short distance of order a−1

s,next to the next endpoint ys,next

with the result (m/h̄)j−(yl) = 6.80 × 10−11 for the case
shown in Fig. 6. The extrapolation at yl = 18.08 mm is
straightforward since the current shows a smooth behavior
in the entire integration range. The same level of agreement
within ∼1% is obtained for the upward motion which is
represented by the same curve of Fig. 6, but the extrapolation
for the loss current is now made at the upper end yu =
49.08 mm (and this contribution is much smaller in the case
shown, but it is comparable for smaller drop heights). We
found agreement within 1% between the various methods
also for other parameters y0, B10, and vx within the range of
interest.

There is one exception. For the strictly vertical mode of
motion analyzed in Ref. [14], where vx = 0, the analytical
solution vanishes and the numerical solution for the intercept
is at least four orders of magnitude smaller than for vx = 3 m/s.
In this case the numerical precision is insufficient to determine
a reliable value of depolarization probability. However, this is
inconsequential since extremely small values of vx make a
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negligible contribution to the mean depolarization rate in a
broad UCN spectrum.

We add one remark. If the explicit analytical solutions (69)
and (70) for β and β ′ were not known, we could use, for
the numerical integration, initial values derived solely from
the properties of the Airy function solution near the turning
points. In these regions the second derivative β ′′ in Eq. (23) is
negligible compared with k2

−β since k2
− � a3

s |y − ys | = k2
+.

Therefore, β(y) ≈ −[±ik+θ ′(y) − Kkx sin θ (y)]α(y)/k2
−(y)

is a good approximation. It differs from Eq. (69) only by
the multiplier [1 − k2

+(y)/k2
−(y)] which is close to 1 at either

turning point since k+ vanishes there. It turns out that these
modified initial values give the same results for β(y) at both
endpoints, and therefore the same depolarization probability,
as the more exact method. However, the function β(y) will be
somewhat different in the range between the endpoints, where
β ′′ cannot be neglected.

We may summarize the results on depolarization in mag-
netic storage as follows: The fact that the three methods used
agree (quantum and semiclassical analysis as well as direct
numerical integration) appears to be a good indication that the
approximations made were justified.

B. Mirror reflection

For UCN reflection from a nonmagnetic mirror in a
magnetic field the analytical results given in Eqs. (52) and
(68) are similar but not identical. We used numerical integra-
tion for the reflected beam, starting from initial conditions
(46) at the mirror surface and note that in this case the
extrapolation to the next turning point is less straightforward
since the curve for current shows, superimposed on a smooth
variation, fast oscillations due to beating between two wave
components: one propagating with wave number k+ and
the other with k−. This is expected for the superposition
of these two waves in Eq. (48). The numerical results are
generally consistent with the analytical expressions but not
precise enough to decide whether the semiclassical approx-
imation (68) or the quantum approximation (52) is more
reliable.

VI. DISCUSSION

Depolarization in high precision neutron lifetime experi-
ments using magnetic confinement must either be negligible
or else very small and quantitatively understood. Using two
analytical methods based on Ref. [14] and direct numerical
integration we have analyzed the depolarization per bounce
and the depolarization rate (per s) for UCNs stored in a model
magnetic field configuration. Our magnetic field model is
similar to the system envisaged for the “bathtub” project [14]
which uses a Halbach array of permanent magnets. Our model
is simplified to a configuration with translational symmetry
in both horizontal directions (z and x) and an ideal Halbach
field whose magnitude depends only on the vertical distance
y from the horizontal magnet surface. The parameters for the
Halbach field are the same as those proposed in Ref. [14].
Our analysis shows that depolarization is mainly caused

by the rotating Halbach field the UCNs see as they move
through the field with finite lateral velocity component vx ,
not by the small field ripple due to imperfections of the
Halbach system. Therefore we do not expect the simplification
of the model to affect the depolarization in a significant
way.

However, the role of the additional horizontal stabilization
field B1 perpendicular to the Halbach field BH is critical.
It has to be strong enough to suppress depolarization to
an acceptable level. The main purpose of this work was to
determine tolerance limits for its magnitude B1.

Our analysis extends that of Ref. [14] by including arbitrary
UCN orbits in 3D space whereas the analysis in Ref. [14]
was restricted to purely vertical motion. As a main result
of the extension we find that the lateral x component of
motion in the plane of the Halbach field makes the dominant
contribution to depolarization while the depolarization due
to the vertical motion is insignificant. As a result, some
previous estimates of depolarization probability may have
been overoptimistic. For the parameters of Ref. [14] (0.05–
0.1 T for B10) we estimate on the basis of Fig. 3 that
even a measurement of the neutron lifetime with precision
10−5 should be possible (disregarding other potential limita-
tions) but the safety margin may be smaller than previously
expected.

Systems with smaller stabilization field, as possibly that
of Ref. [11], where B1 has not been specified, may require a
separate analysis since they use a cylindrical rather than planar
field distribution. However, the main result of the present work
is independent of geometrical details: The depolarization loss
is determined, not by the largest rotation frequency of B as seen
by the UCNs as they traverse the field, but by the conditions
at the turning points where the spin-flipped neutrons can leave
the storage system.

This is an important point which may appear to contradict
the common view, but is also implied by the work of Ref. [14].
Our interpretation of the present results is as follows: The
measurable depolarization is not directly caused by critical
spots within the storage volume, where the B field has a small
magnitude B and rotates fast in the moving reference frame.
All that matters for depolarization are the field conditions
at the turning points where the storable UCNs are reflected
back into the storage space while the spin-flipped fraction
leaves the trap. The loss current in Eq. (37) is determined
by the value of K2k2

x sin2 θ/k4
− at such a surface. This factor

is large for fast field variation (ω ∼ vx/L ∼ Kkx) seen by
the neutron moving in a horizontal direction (parallel to the
turning surface), as well as for small B since k2

− from Eq. (31)
is directly proportional to B at a turning point where k+ = 0. It
also increases quadratically with sinθ = BH/B, i.e., with the
magnitude BH of the Halbach field at a turning surface. If a
broad spectrum of UCNs is stored the critical points will be of
importance in the sense that some, usually UCNs with very low
energy of vertical motion, may have a turning surface near such
areas and therefore make a large contribution. In fact, the low-
energy UCNs make the largest contribution to depolarization
seen in the peaks in Fig. 3, and they are the reason why a larger
stabilization field B1 suppresses the net depolarization very
effectively.
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Figure 3 shows τ−1
dep/τ

−1
n , the depolarization rate divided by

the β-decay rate, as a function of normalized vertical velocity
v

(n)
+ in the neutral plane, where gravity and the magnetic force

are balanced. Both curves, for B10 = 0.05 T and for B10 =
0.005 T, are peaked at small values of v

(n)
+ . Thus the UCNs

most in danger of suffering depolarization are confined to
a narrow space of ∼10 cm about the neutral plane, moving
laterally as they float in the field (for v

(n)
+ = 0) or oscillate up

and down about the neutral plane with small amplitude.
The magnetic field configurations and neutron orbits in

actual or projected 3D magneto-gravitational UCN con-
finement systems [11–15] are more complex than in our
field model. However, for some of these concepts the 1D
approximation of our model appears to be justified. For the
“bathtub” system [14], the neutral plane of our model, about
which low-energy UCNs oscillate, corresponds to a strongly
anisotropic oscillator potential in the vicinity of the minimum
of potential gy + |μn|B

m
for the low-field seeking spin state.

For B10 = 0.005 T the minimum is located about 1.8 cm
up from the lowest point of the double-curved surface of
permanent magnets of Ref. [14]. For this anisotropic oscillator,
the frequency for oscillations in the vertical y-direction, ω0y =
( dg+

dy
)1/2 = 57 s−1, is 22 times larger than for the z direction,

ω0z = ( g

Rz
)1/2 = 2.6 s−1 where the radius of curvature is

Rz = ρ = 1.5 m. For the x direction, with its asymmetry, there
are two curvatures (0.5 and 1.0 m) and, therefore, two ratios
replacing 22: 13 on one side (x < 0) and 18 for x > 0. Since
all these factors are large, the neutrons move almost freely,
on a relative scale, in the peripheral x and z directions and,
therefore, our 1D model should be a good approximation. As
a result, we expect the peripheral velocity in the plane of the
Halbach field, which corresponds to vx in the model, to be the
main source of depolarization.

In the cylindrical field geometries of references [11–13,15],
the field magnitude B varies more slowly in space. Thus, the
oscillator is less anisotropic, the degrees of freedom of motion
in different coordinate directions are less decoupled and a
more complex analysis may be required. To the extent that
qualitative features of our model may still apply we expect that
the main source of depolarization would be a large peripheral
UCN velocity perpendicular to the cylinder axis. In this case,
the peripheral velocity corresponds to the component vx of the
model.

Besides depolarization of magnetically confined UCNs,
we also studied depolarization in UCN reflection on a
nonmagnetic mirror immersed in a magnetic field. The field
was our model field into which we conceptually inserted
an ideal neutron mirror horizontally at a variable height.
The problem of possible depolarization in mirror reflection
is of paramount importance in UCN experiments on the
asymmetry parameter A in neutron decay [20,21] and it is also
encountered in high-field UCN polarizers. Depolarization is
expected since the adiabaticity condition may be violated due
to the abrupt change of flight direction at the reflection point,
thus dB/dt changes abruptly. This problem has first been
studied in Ref. [17] by adapting the Majorana semi-classical
approach [18] to the mirror geometry. In our analysis the three
methods used (quantum approximation, semi-classical and

numerical approach) gave identical results for depolarization
in magnetic UCN storage. For the mirror reflection problem the
quantum result (52) and the semiclassical result (68) are very
similar but not identical, as shown in Fig. 5. The numerical
method is not accurate enough in this case to distinguish
between the two. The semiclassical result (68) lacks the
factor k−m/k+m which would cause a divergence if the mirror
is placed at a turning point height (since k+ = 0 in this
region).

Between the turning points the difference is minor and
the common result is as follows: Depolarization in mirror
reflection, averaged over field directions as in our model
field, is determined mainly by the second term of Eq. (68).
It increases with the frequency of field variation (∼Kkx) seen
by the neutron moving along the in-plane x direction. It also
increases quadratically with the sine of the field angle θ , which
is a measure of Halbach field strength BH = B sin θ , and with
its gradient, θ ′ = dθ

dy
, at the mirror location. Depolarization

strongly decreases with increasing field strength B at the
mirror (∼B2

H/B4). Figure 5 shows that, for vx = 3 m/s, the
magnitude of depolarization per one bounce on the mirror is
up to ∼104 times larger than the depolarization per bounce in
the magnetic field without the mirror. The depolarization on
the mirror has its peak value at the vertical location where the
depolarization probability plotted in Fig. 2 also has its peak. In
fact, comparing expression (68) for depolarization at the mirror
with the result (34) for the field alone [and neglecting the small
first term on the right-hand side of Eq. (68)] we realize that
the mirror acts like a polarization analyzer inserted into the
particle beam moving through the B field. This interpretation
also holds for a nonhorizontal or curved mirror since the
second term on the right-hand side of Eq. (68) is independent
of the orientation of the reflecting surface element. In this
case, the second term should be averaged over the mirror
extension.

In cases where many successive wall reflections take place
in a weak, nonuniform magnetic field, the depolarization may
become significant. Comparing our result (66) with equations
(10 and 11) of Ref. [17] we note that both results have the
square of the Larmor frequency ωL at the mirror position
in the denominator. However, a quantitative comparison is
difficult since the magnetic field variations assumed in the two
approaches are different. In either analysis, no depolarization
is expected for a uniform magnetic field.

Our field model may be too specific to allow a quantitative
comparison with the data [25,26] on depolarization in UCN
reflection from various mirror materials (like beryllium or
samples with diamond-like carbon coating). Expression (68)
does not depend on specific properties of the mirror, as long
as it is a good, nearly loss-free UCN reflector. Therefore,
Eq. (68) could explain, without having to invoke any anomalies
[25], the remarkable similarity and temperature independence
of depolarization probabilities measured for different wall
materials. Such independence would be expected if the
samples were exposed to the same nonuniform magnetic
field.

Our results, which were obtained as straightforward solu-
tions to the spin-dependent Schrödinger equation, may also

065501-15



STEYERL, KAUFMAN, MÜLLER, MALIK, AND DESAI PHYSICAL REVIEW C 86, 065501 (2012)

provide an alternative to the discussion of new short-range,
spin-dependent forces as a possible pathway to explain-
ing the depolarization data for stored UCNs. For a recent
comprehensive review of fundamental physics with neutrons
see Ref. [27].
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