research

Ultracold neutron depolarization in magnetic bottles

Abstract

We analyze the depolarization of ultracold neutrons confined in a magnetic field configuration similar to those used in existing or proposed magneto-gravitational storage experiments aiming at a precise measurement of the neutron lifetime. We use an extension of the semi-classical Majorana approach as well as an approximate quantum mechanical analysis, both pioneered by Walstrom et al. [Nucl. Instr. Meth. Phys. Res. A 599, 82 (2009)]. In contrast with this previous work we do not restrict the analysis to purely vertical modes of neutron motion. The lateral motion is shown to cause the predominant depolarization loss in a magnetic storage trap. The system studied also allowed us to estimate the depolarization loss suffered by ultracold neutrons totally reflected on a non-magnetic mirror immersed in a magnetic field. This problem is of preeminent importance in polarized neutron decay studies such as the measurement of the asymmetry parameter A using ultracold neutrons, and it may limit the efficiency of ultracold neutron polarizers based on passage through a high magnetic field.Comment: 18 pages, 6 figure

    Similar works