32 research outputs found
Direct visualization of the charge transfer in Graphene/-RuCl heterostructure
We investigate the electronic properties of a graphene and -ruthenium
trichloride (hereafter RuCl) heterostructure, using a combination of
experimental and theoretical techniques. RuCl is a Mott insulator and a
Kitaev material, and its combination with graphene has gained increasing
attention due to its potential applicability in novel electronic and
optoelectronic devices. By using a combination of spatially resolved
photoemission spectroscopy, low energy electron microscopy, and density
functional theory (DFT) calculations we are able to provide a first direct
visualization of the massive charge transfer from graphene to RuCl, which
can modify the electronic properties of both materials, leading to novel
electronic phenomena at their interface. The electronic band structure is
compared to DFT calculations that confirm the occurrence of a Mott transition
for RuCl. Finally, a measurement of spatially resolved work function allows
for a direct estimate of the interface dipole between graphene and RuCl.
The strong coupling between graphene and RuCl could lead to new ways of
manipulating electronic properties of two-dimensional lateral heterojunction.
Understanding the electronic properties of this structure is pivotal for
designing next generation low-power opto-electronics devices
Modulation Doping via a 2d Atomic Crystalline Acceptor
Two-dimensional (2d) nano-electronics, plasmonics, and emergent phases
require clean and local charge control, calling for layered, crystalline
acceptors or donors. Our Raman, photovoltage, and electrical conductance
measurements combined with \textit{ab initio} calculations establish the large
work function and narrow bands of -RuCl enable modulation doping of
exfoliated, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE)
materials. Short-ranged lateral doping () and high
homogeneity are achieved in proximate materials with a single layer of \arucl.
This leads to the highest monolayer graphene (mlg) mobilities ($4,900\
\text{cm}^2/ \text{Vs}3\times10^{13}\
\text{cm}^{-2}6\times10^{13}\ \text{cm}^{-2}$). We further demonstrate proof of principle
optical sensing, control via twist angle, and charge transfer through hexagonal
boron nitride (hBN)
ΠΠ°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΠΏΡΠ΅Π΄ΠΈΠΊΡΠΎΡΡ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΡ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ ΠΏΡΠΈ ΡΠ½Π΄ΠΎΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΡ ΡΡΡΡΠ°Π²ΠΎΠ² Π½Π° ΡΠΎΠ½Π΅ ΠΏΡΠΈΠ΅ΠΌΠ° ΠΏΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΡΡ Π°Π½ΡΠΈΠΊΠΎΠ°Π³ΡΠ»ΡΠ½ΡΠΎΠ²
Introduction. Direct oral anticoagulants (DOAC) rivaroxaban and apixaban have significantly reduced the risk of developing venous thromboembolic complications (VTEC). However, the use of DOAC may be associated with a higher risk of bleeding, especially actual in patients after total hip arthroplasty (THA).Material and methods. We enrolled 38 patients with moderate osteoarthritis of the hip joints undergoing THA. The mean age of patients was 58 (33; 85) years. All the patients received rivaroxaban or apixaban in the doses specified by Russian clinical guidelines for the diagnosis, treatment and prevention of venous thromboembolic complications (VTEC). Retrospectively, in the postoperative period, the patients were divided into two groups: Group 1 β 31 patients (20 women and 11 men), who had no hemorrhagic complications after hip replacement; and Group 2 β 7 patients (4 women and 3 men) who experienced hemorrhagic events in the form of hematomas in the wound area. Laboratory tests were performed for all patient baseline (1st day of hospitalization), after surgery (1st day after THA), and on the 7th day after THA. Analyses included the determination of hemostasis parameters (INR, aPPT, fibrinogen, D-dimer), hematological (HGB, PLT, RBC) and biochemical parameters (calcium, ionized calcium, serum iron, hs-CRP).Results. The analysis of biochemical parameters in patients with hemorrhagic complications revealed a significant increase of fibrinogen (p=0,023) compared with uncomplicated cases. Serum iron concentration in men with hemorrhagic complications in the postoperative period was significantly lower than in patients without complications. In patients with hemorrhagic complications, the ionized calcium was lower (p=0,032) than in patients without complications, but within the reference values. The hs-CRP concentration in the group with hemorrhagic complications was twice higher than in the group without complication and eight times above the reference values.Conclusion. The concentration of iron in the blood serum in men below 11 mmol/l and a slight hyperfibrinogenemia of 4.65 g/l in all the patients are the risks of developing hematomas in the area of surgery. These parameters should be used to predict the risk of hemorrhagic complications in patients before THA and recommended for control before the surgery and on the 1st day after THA (hs-CRP).ΠΠ²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ ΠΏΡΡΠΌΡΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΡΡ ΡΠ°ΠΊΡΠΎΡΠΎΠ² ΡΠ²Π΅ΡΡΡΠ²Π°Π½ΠΈΡ ΠΊΡΠΎΠ²ΠΈ Π΄Π»Ρ ΠΏΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΈΠ΅ΠΌΠ° (ΡΠΈΠ²Π°ΡΠΎΠΊΡΠ°Π±Π°Π½ ΠΈ Π°ΠΏΠΈΠΊΡΠ°Π±Π°Π½) ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠ·ΠΈΡΡ ΡΠΈΡΠΊ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π²Π΅Π½ΠΎΠ·Π½ΡΡ
ΡΡΠΎΠΌΠ±ΠΎΡΠΌΠ±ΠΎΠ»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ (ΠΠ’ΠΠ). ΠΠ΄Π½Π°ΠΊΠΎ Π² ΡΡΠ΄Π΅ ΡΠ»ΡΡΠ°Π΅Π² Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΡΠΎ ΡΠΊΡΡΡΡΠΌΠΈ Π½Π°ΡΡΡΠ΅Π½ΠΈΡΠΌΠΈ Π² ΡΠΈΡΡΠ΅ΠΌΠ΅ Π³Π΅ΠΌΠΎΡΡΠ°Π·Π° ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡΡΠΌΡΡ
ΠΏΠ΅ΡΠΎΡΠ°Π»ΡΠ½ΡΡ
Π°Π½ΡΠΈΠΊΠΎΠ°Π³ΡΠ»ΡΠ½ΡΠΎΠ² ΠΌΠΎΠΆΠ΅Ρ ΡΠΎΠΏΡΠΎΠ²ΠΎΠΆΠ΄Π°ΡΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½Π½ΡΠΌ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½ΠΎΠ³ΠΎ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠ»Π΅ Π°ΡΡΡΠΎΠΏΠ»Π°ΡΡΠΈΠΊΠΈ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π°.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠΎΠ΄ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ΠΌ Π½Π°Ρ
ΠΎΠ΄ΠΈΠ»ΠΈΡΡ 38 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΎΡΡΠ΅ΠΎΠ°ΡΡΡΠΈΡΠΎΠΌ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π° III ΡΡ., ΠΏΠ΅ΡΠ΅Π½Π΅ΡΡΠΈΡ
ΠΏΠ»Π°Π½ΠΎΠ²ΠΎΠ΅ ΡΠΎΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠ½Π΄ΠΎΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΡΡΡΠ°Π²Π°. Π‘ΡΠ΅Π΄Π½ΠΈΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΡΠΎΡΡΠ°Π²Π»ΡΠ» 58 (33; 85) Π»Π΅Ρ. ΠΡΠ΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈ ΡΠΈΠ²Π°ΡΠΎΠΊΡΠ°Π±Π°Π½ ΠΈΠ»ΠΈ Π°ΠΏΠΈΠΊΡΠ°Π±Π°Π½ Π² Π΄ΠΎΠ·Π°Ρ
, ΡΠΊΠ°Π·Π°Π½Π½ΡΡ
Π ΠΎΡΡΠΈΠΉΡΠΊΠΈΠΌΠΈ ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΡΠΌΠΈ ΠΏΠΎ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ΅, Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠΎΡΠΈΠ»Π°ΠΊΡΠΈΠΊΠ΅ ΠΠ’ΠΠ. Π Π΅ΡΡΠΎΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎ Π² ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Π΅ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Π±ΡΠ»ΠΈ ΡΠ°Π·Π΄Π΅Π»Π΅Π½Ρ Π½Π° Π΄Π²Π΅ Π³ΡΡΠΏΠΏΡ: 1-Ρ Π³ΡΡΠΏΠΏΠ° β 31 ΠΏΠ°ΡΠΈΠ΅Π½Ρ (20 ΠΆΠ΅Π½ΡΠΈΠ½ ΠΈ 11 ΠΌΡΠΆΡΠΈΠ½), Ρ ΠΊΠΎΡΠΎΡΡΡ
ΠΏΠΎΡΠ»Π΅ ΡΠ½Π΄ΠΎΠΏΡΠΎΡΠ΅Π·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π·ΠΎΠ±Π΅Π΄ΡΠ΅Π½Π½ΡΡ
ΡΡΡΡΠ°Π²ΠΎΠ² Π½Π΅ Π±ΡΠ»ΠΎ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ, ΠΈ 2-Ρ Π³ΡΡΠΏΠΏΠ° β 7 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² (4 ΠΆΠ΅Π½ΡΠΈΠ½Ρ ΠΈ 3 ΠΌΡΠΆΡΠΈΠ½), Ρ ΠΊΠΎΡΠΎΡΡΡ
Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΈΡΡ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΠ±ΡΡΠΈΡ Π² Π²ΠΈΠ΄Π΅ Π³Π΅ΠΌΠ°ΡΠΎΠΌ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ°Π½Ρ. ΠΡΠ΅ΠΌ Π±ΠΎΠ»ΡΠ½ΡΠΌ Π²ΡΠΏΠΎΠ»Π½Π΅Π½Ρ Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄ΠΎ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ, Π½Π° ΠΏΠ΅ΡΠ²ΡΠ΅ ΠΈ 10-Π΅ ΡΡΡΠΊΠΈ ΠΏΠΎΡΠ»Π΅ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π°ΡΡΡΠΎΠΏΠ»Π°ΡΡΠΈΠΊΠΈ. ΠΠ°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΠΊΠ»ΡΡΠ°Π»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π³Π΅ΠΌΠΎΡΡΠ°Π·Π° (ΠΌΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΠΎΠ΅ Π½ΠΎΡΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅, Π°ΠΊΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΡΠ°ΡΡΠΈΡΠ½ΠΎΠ΅ ΡΡΠΎΠΌΠ±ΠΎΠΏΠ»Π°ΡΡΠΈΠ½ΠΎΠ²ΠΎΠ΅ Π²ΡΠ΅ΠΌΡ, ΡΠΈΠ±ΡΠΈΠ½ΠΎΠ³Π΅Π½, D-Π΄ΠΈΠΌΠ΅Ρ) ΠΈ Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
(ΡΡΠΎΠ²Π½ΠΈ Π² ΠΊΡΠΎΠ²ΠΈ ΠΊΠ°Π»ΡΡΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ, ΠΊΠ°Π»ΡΡΠΈΡ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ, ΡΡΠ²ΠΎΡΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΆΠ΅Π»Π΅Π·Π°, Π‘-ΡΠ΅Π°ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° (Π‘Π Π), ΠΊΡΠ΅Π°ΡΠΈΠ½ΠΈΠ½Π°), Π³Π΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
(ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°, ΡΡΠΎΠΌΠ±ΠΎΡΠΈΡΠΎΠ², ΡΡΠΈΡΡΠΎΡΠΈΡΠΎΠ²) ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΡΠΈΠ²Π°ΡΠΎΠΊΡΠ°Π±Π°Π½Π° ΠΈΠ»ΠΈ Π°ΠΏΠΈΠΊΡΠ°Π±Π°Π½Π° Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΒ ΠΎΠ±ΡΡΠΆΠ΄Π΅Π½ΠΈΠ΅. ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡΠΌΠΈ Π±ΡΠ»ΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΎ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ Π² ΠΊΡΠΎΠ²ΠΈ ΡΠΈΠ±ΡΠΈΠ½ΠΎΠ³Π΅Π½Π° (Ρ=0,023) ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΡΠΎ ΡΠ»ΡΡΠ°ΡΠΌΠΈ Π½Π΅ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΡΡΠ²ΠΎΡΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΆΠ΅Π»Π΅Π·Π° Ρ ΠΌΡΠΆΡΠΈΠ½ Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡΠΌΠΈ Π² ΠΏΠΎΡΠ»Π΅ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π±ΡΠ»Π° ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎ Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π±Π΅Π· ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ. ΠΠΎΠ½ΡΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ Π² ΡΡΠΎΠ²Π½Π΅ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΡΡΠΈΡ (Ca2+). Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡΠΌΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Ca2+ Π±ΡΠ»Π° ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΠΎ Π½ΠΈΠΆΠ΅ (Ρ=0,032), ΡΠ΅ΠΌ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Π±Π΅Π· ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ, Π½ΠΎ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΡΠ΅ΡΠ΅ΡΠ΅Π½ΡΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ. Π£ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡΠΌΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π‘Π Π Π±ΡΠ»Π° Π² 2 ΡΠ°Π·Π° Π²ΡΡΠ΅, ΡΠ΅ΠΌ Π² Π³ΡΡΠΏΠΏΠ΅ Π±Π΅Π· ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ ΠΈ Π² 8 ΡΠ°Π· Π²ΡΡΠ΅ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΡΠ΅ΡΠ΅ΡΠ΅Π½ΡΠ½ΡΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ.ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ ΠΆΠ΅Π»Π΅Π·Π° Π² ΡΡΠ²ΠΎΡΠΎΡΠΊΠ΅ ΠΊΡΠΎΠ²ΠΈ Ρ ΠΌΡΠΆΡΠΈΠ½ Π½ΠΈΠΆΠ΅ 11 ΠΌΠΊΠΌΠΎΠ»Ρ/Π» ΠΈ Π½Π΅Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ Π³ΠΈΠΏΠ΅ΡΡΠΈΠ±ΡΠΈΠ½ΠΎΠ³Π΅Π½Π΅ΠΌΠΈΡ ΡΠ²Π»ΡΡΡΡΡ ΡΠΈΡΠΊΠ°ΠΌΠΈ ΡΠ°Π·Π²ΠΈΡΠΈΡ Π³Π΅ΠΌΠ°ΡΠΎΠΌ Π² Π·ΠΎΠ½Π΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. ΠΠ°Π½Π½ΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·Π° ΡΠΈΡΠΊΠ° ΡΠ°Π·Π²ΠΈΡΠΈΡ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΡΡΠΎΠΏΠ΅Π΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°ΡΡ Π² ΠΊΡΠΎΠ²ΠΈ ΠΏΠ΅ΡΠ΅Π΄ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠ΅ΠΉ (ΡΡΠΎΠ²Π΅Π½Ρ ΡΡΠ²ΠΎΡΠΎΡΠΎΡΠ½ΠΎΠ³ΠΎ ΠΆΠ΅Π»Π΅Π·Π° Ρ ΠΌΡΠΆΡΠΈΠ½ ΠΈ ΡΠΈΠ±ΡΠΈΠ½ΠΎΠ³Π΅Π½Π°) ΠΈ Π² ΠΏΠ΅ΡΠ²ΡΠΉ Π΄Π΅Π½Ρ ΠΏΠΎΡΠ»Π΅ Π½Π΅Π΅ (ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ Π‘Π Π)
Ultra-sharp lateral p-n junctions in modulation-doped graphene
We demonstrate ultra-sharp (β²10 nm) lateral p-n junctions in graphene using electronic transport, scanning tunneling microscopy, and first principles calculations. The p-n junction lies at the boundary between differentially-doped regions of a graphene sheet, where one side is intrinsic and the other is charge-doped by proximity to a flake of Ξ±-RuCl3 across a thin insulating barrier. We extract the p-n junction contribution to the device resistance to place bounds on the junction width. We achieve an ultra-sharp junction when the boundary between the intrinsic and doped regions is defined by a cleaved crystalline edge of Ξ±-RuCl3 located 2 nm from the graphene. Scanning tunneling spectroscopy in heterostructures of graphene, hexagonal boron nitride, and Ξ±-RuCl3 shows potential variations on a sub-10 nm length scale. First principles calculations reveal the charge-doping of graphene decays sharply over just nanometers from the edge of the Ξ±-RuCl3 flake