32 research outputs found

    Direct visualization of the charge transfer in Graphene/Ξ±\alpha-RuCl3_3 heterostructure

    Get PDF
    We investigate the electronic properties of a graphene and Ξ±\alpha-ruthenium trichloride (hereafter RuCl3_3) heterostructure, using a combination of experimental and theoretical techniques. RuCl3_3 is a Mott insulator and a Kitaev material, and its combination with graphene has gained increasing attention due to its potential applicability in novel electronic and optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy, low energy electron microscopy, and density functional theory (DFT) calculations we are able to provide a first direct visualization of the massive charge transfer from graphene to RuCl3_3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. The electronic band structure is compared to DFT calculations that confirm the occurrence of a Mott transition for RuCl3_3. Finally, a measurement of spatially resolved work function allows for a direct estimate of the interface dipole between graphene and RuCl3_3. The strong coupling between graphene and RuCl3_3 could lead to new ways of manipulating electronic properties of two-dimensional lateral heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power opto-electronics devices

    Modulation Doping via a 2d Atomic Crystalline Acceptor

    Full text link
    Two-dimensional (2d) nano-electronics, plasmonics, and emergent phases require clean and local charge control, calling for layered, crystalline acceptors or donors. Our Raman, photovoltage, and electrical conductance measurements combined with \textit{ab initio} calculations establish the large work function and narrow bands of Ξ±\alpha-RuCl3_3 enable modulation doping of exfoliated, chemical vapor deposition (CVD), and molecular beam epitaxy (MBE) materials. Short-ranged lateral doping (≀65Β nm{\leq}65\ \text{nm}) and high homogeneity are achieved in proximate materials with a single layer of \arucl. This leads to the highest monolayer graphene (mlg) mobilities ($4,900\ \text{cm}^2/ \text{Vs})atthesehighholedensities() at these high hole densities (3\times10^{13}\ \text{cm}^{-2});andyieldslargerchargetransfertobilayergraphene(blg)(); and yields larger charge transfer to bilayer graphene (blg) (6\times10^{13}\ \text{cm}^{-2}$). We further demonstrate proof of principle optical sensing, control via twist angle, and charge transfer through hexagonal boron nitride (hBN)

    Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Π΅ ΠΏΡ€Π΅Π΄ΠΈΠΊΡ‚ΠΎΡ€Ρ‹ гСморрагичСских ослоТнСний ΠΏΡ€ΠΈ эндопротСзировании Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Ρ… суставов Π½Π° Ρ„ΠΎΠ½Π΅ ΠΏΡ€ΠΈΠ΅ΠΌΠ° ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… антикоагулянтов

    Get PDF
    Introduction. Direct oral anticoagulants (DOAC) rivaroxaban and apixaban have significantly reduced the risk of developing venous thromboembolic complications (VTEC). However, the use of DOAC may be associated with a higher risk of bleeding, especially actual in patients after total hip arthroplasty (THA).Material and methods. We enrolled 38 patients with moderate osteoarthritis of the hip joints undergoing THA. The mean age of patients was 58 (33; 85) years. All the patients received rivaroxaban or apixaban in the doses specified by Russian clinical guidelines for the diagnosis, treatment and prevention of venous thromboembolic complications (VTEC). Retrospectively, in the postoperative period, the patients were divided into two groups: Group 1 β€” 31 patients (20 women and 11 men), who had no hemorrhagic complications after hip replacement; and Group 2 β€” 7 patients (4 women and 3 men) who experienced hemorrhagic events in the form of hematomas in the wound area. Laboratory tests were performed for all patient baseline (1st day of hospitalization), after surgery (1st day after THA), and on the 7th day after THA. Analyses included the determination of hemostasis parameters (INR, aPPT, fibrinogen, D-dimer), hematological (HGB, PLT, RBC) and biochemical parameters (calcium, ionized calcium, serum iron, hs-CRP).Results. The analysis of biochemical parameters in patients with hemorrhagic complications revealed a significant increase of fibrinogen (p=0,023) compared with uncomplicated cases. Serum iron concentration in men with hemorrhagic complications in the postoperative period was significantly lower than in patients without complications. In patients with hemorrhagic complications, the ionized calcium was lower (p=0,032) than in patients without complications, but within the reference values. The hs-CRP concentration in the group with hemorrhagic complications was twice higher than in the group without complication and eight times above the reference values.Conclusion. The concentration of iron in the blood serum in men below 11 mmol/l and a slight hyperfibrinogenemia of 4.65 g/l in all the patients are the risks of developing hematomas in the area of surgery. These parameters should be used to predict the risk of hemorrhagic complications in patients before THA and recommended for control before the surgery and on the 1st day after THA (hs-CRP).Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅ прямыС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ‚ΠΎΡ€Ρ‹ Ρ„Π°ΠΊΡ‚ΠΎΡ€ΠΎΠ² свСртывания ΠΊΡ€ΠΎΠ²ΠΈ для ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΡ€ΠΈΠ΅ΠΌΠ° (ривароксабан ΠΈ апиксабан) ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ сущСствСнно ΡΠ½ΠΈΠ·ΠΈΡ‚ΡŒ риск развития Π²Π΅Π½ΠΎΠ·Π½Ρ‹Ρ… тромбоэмболичСских ослоТнСний (Π’Π’Π­Πž). Однако Π² рядС случаСв Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² со скрытыми Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΡΠΌΠΈ Π² систСмС гСмостаза ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ прямых ΠΏΠ΅Ρ€ΠΎΡ€Π°Π»ΡŒΠ½Ρ‹Ρ… антикоагулянтов ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Ρ‚ΡŒΡΡ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½Π½Ρ‹ΠΌ риском развития послСопСрационого кровотСчСния послС артропластики Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ сустава.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Под наблюдСниСм Π½Π°Ρ…ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ 38 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с остСоартритом Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ сустава III ст., ΠΏΠ΅Ρ€Π΅Π½Π΅ΡΡˆΠΈΡ… ΠΏΠ»Π°Π½ΠΎΠ²ΠΎΠ΅ Ρ‚ΠΎΡ‚Π°Π»ΡŒΠ½ΠΎΠ΅ эндопротСзированиС Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠ³ΠΎ сустава. Π‘Ρ€Π΅Π΄Π½ΠΈΠΉ возраст ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² составлял 58 (33; 85) Π»Π΅Ρ‚. ВсС ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π»ΠΈ ривароксабан ΠΈΠ»ΠΈ апиксабан Π² Π΄ΠΎΠ·Π°Ρ…, ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… Российскими клиничСскими рСкомСндациями ΠΏΠΎ диагностикС, Π»Π΅Ρ‡Π΅Π½ΠΈΡŽ ΠΈ ΠΏΡ€ΠΎΡ„ΠΈΠ»Π°ΠΊΡ‚ΠΈΠΊΠ΅ Π’Π’Π­Πž. РСтроспСктивно Π² послСопСрационном ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Π΅ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ Ρ€Π°Π·Π΄Π΅Π»Π΅Π½Ρ‹ Π½Π° Π΄Π²Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹: 1-я Π³Ρ€ΡƒΠΏΠΏΠ° β€” 31 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ (20 ΠΆΠ΅Π½Ρ‰ΠΈΠ½ ΠΈ 11 ΠΌΡƒΠΆΡ‡ΠΈΠ½), Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… послС эндопротСзирования Ρ‚Π°Π·ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹Ρ… суставов Π½Π΅ Π±Ρ‹Π»ΠΎ гСморрагичСских ослоТнСний, ΠΈ 2-я Π³Ρ€ΡƒΠΏΠΏΠ° β€” 7 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (4 ΠΆΠ΅Π½Ρ‰ΠΈΠ½Ρ‹ ΠΈ 3 ΠΌΡƒΠΆΡ‡ΠΈΠ½), Ρƒ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… наблюдались гСморрагичСскиС события Π² Π²ΠΈΠ΄Π΅ Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌ Π² области Ρ€Π°Π½Ρ‹. ВсСм Π±ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Π΅ исслСдования Π΄ΠΎ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ, Π½Π° ΠΏΠ΅Ρ€Π²Ρ‹Π΅ ΠΈ 10-Π΅ сутки послС провСдСния артропластики. Π›Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠ΅ исслСдованиС Π²ΠΊΠ»ΡŽΡ‡Π°Π»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ гСмостаза (ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠ΅ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ΅ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅, Π°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ частичноС тромбопластиновоС врСмя, Ρ„ΠΈΠ±Ρ€ΠΈΠ½ΠΎΠ³Π΅Π½, D-Π΄ΠΈΠΌΠ΅Ρ€) ΠΈ биохимичСских (ΡƒΡ€ΠΎΠ²Π½ΠΈ Π² ΠΊΡ€ΠΎΠ²ΠΈ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΎΠ±Ρ‰Π΅Π³ΠΎ, ΠΊΠ°Π»ΡŒΡ†ΠΈΡ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ, сывороточного ΠΆΠ΅Π»Π΅Π·Π°, Π‘-Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° (Π‘Π Π‘), ΠΊΡ€Π΅Π°Ρ‚ΠΈΠ½ΠΈΠ½Π°), гСматологичСских (содСрТаниС Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π°, Ρ‚Ρ€ΠΎΠΌΠ±ΠΎΡ†ΠΈΡ‚ΠΎΠ², эритроцитов) ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡŽ ривароксабана ΠΈΠ»ΠΈ апиксабана Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡ€ΠΎΠ²ΠΈ.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ и обсуТдСниС. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ биохимичСских ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с гСморрагичСскими ослоТнСниями Π±Ρ‹Π»ΠΎ выявлСно статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π² ΠΊΡ€ΠΎΠ²ΠΈ Ρ„ΠΈΠ±Ρ€ΠΈΠ½ΠΎΠ³Π΅Π½Π° (Ρ€=0,023) ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ со случаями нСослоТнСнного тСчСния. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ сывороточного ΠΆΠ΅Π»Π΅Π·Π° Ρƒ ΠΌΡƒΠΆΡ‡ΠΈΠ½ с гСморрагичСскими ослоТнСниями Π² послСопСрационный ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ Π±Ρ‹Π»Π° статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎ Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Π΅Π· ослоТнСний. ΠšΠΎΠ½ΡΡ‚Π°Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ измСнСния Π² ΡƒΡ€ΠΎΠ²Π½Π΅ ΠΈΠΎΠ½ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ (Ca2+). Π£ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с гСморрагичСскими ослоТнСниями концСнтрация Ca2+ Π±Ρ‹Π»Π° статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΠΎ Π½ΠΈΠΆΠ΅ (Ρ€=0,032), Ρ‡Π΅ΠΌ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π±Π΅Π· ослоТнСний, Π½ΠΎ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π£ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с гСморрагичСскими ослоТнСниями концСнтрация Π‘Π Π‘ Π±Ρ‹Π»Π° Π² 2 Ρ€Π°Π·Π° Π²Ρ‹ΡˆΠ΅, Ρ‡Π΅ΠΌ Π² Π³Ρ€ΡƒΠΏΠΏΠ΅ Π±Π΅Π· ослоТнСний ΠΈ Π² 8 Ρ€Π°Π· Π²Ρ‹ΡˆΠ΅ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с Ρ€Π΅Ρ„Π΅Ρ€Π΅Π½Ρ‚Π½Ρ‹ΠΌΠΈ значСниями.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠšΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΡ ΠΆΠ΅Π»Π΅Π·Π° Π² сывороткС ΠΊΡ€ΠΎΠ²ΠΈ Ρƒ ΠΌΡƒΠΆΡ‡ΠΈΠ½ Π½ΠΈΠΆΠ΅ 11 мкмоль/Π» ΠΈ Π½Π΅Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ гипСрфибриногСнСмия ΡΠ²Π»ΡΡŽΡ‚ΡΡ рисками развития Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌ Π² Π·ΠΎΠ½Π΅ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ. Π”Π°Π½Π½Ρ‹Π΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ для ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π° риска развития гСморрагичСских ослоТнСний Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ортопСдичСского профиля, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π² ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ΅Ρ€Π΅Π΄ ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ (ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ сывороточного ΠΆΠ΅Π»Π΅Π·Π° Ρƒ ΠΌΡƒΠΆΡ‡ΠΈΠ½ ΠΈ Ρ„ΠΈΠ±Ρ€ΠΈΠ½ΠΎΠ³Π΅Π½Π°) ΠΈ Π² ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ дСнь послС Π½Π΅Π΅ (содСрТаниС Π‘Π Π‘)

    Ultra-sharp lateral p-n junctions in modulation-doped graphene

    No full text
    We demonstrate ultra-sharp (≲10 nm) lateral p-n junctions in graphene using electronic transport, scanning tunneling microscopy, and first principles calculations. The p-n junction lies at the boundary between differentially-doped regions of a graphene sheet, where one side is intrinsic and the other is charge-doped by proximity to a flake of Ξ±-RuCl3 across a thin insulating barrier. We extract the p-n junction contribution to the device resistance to place bounds on the junction width. We achieve an ultra-sharp junction when the boundary between the intrinsic and doped regions is defined by a cleaved crystalline edge of Ξ±-RuCl3 located 2 nm from the graphene. Scanning tunneling spectroscopy in heterostructures of graphene, hexagonal boron nitride, and Ξ±-RuCl3 shows potential variations on a sub-10 nm length scale. First principles calculations reveal the charge-doping of graphene decays sharply over just nanometers from the edge of the Ξ±-RuCl3 flake
    corecore