837 research outputs found

    A Test of the Standard Hypothesis for the Origin of the HI Holes in Holmberg II

    Get PDF
    The nearby irregular galaxy Holmberg II has been extensively mapped in HI using the Very Large Array (VLA), revealing intricate structure in its interstellar gas component (Puche et al. 1992). An analysis of these structures shows the neutral gas to contain a number of expanding HI holes. The formation of the HI holes has been attributed to multiple supernova events occurring within wind-blown shells around young, massive star clusters, with as many as 10-200 supernovae required to produce many of the holes. From the sizes and expansion velocities of the holes, Puche et al. assigned ages of ~10^7 to 10^8 years. If the supernova scenario for the formation of the HI holes is correct, it implies the existence of star clusters with a substantial population of late-B, A and F main sequence stars at the centers of the holes. Many of these clusters should be detectable in deep ground-based CCD images of the galaxy. In order to test the supernova hypothesis for the formation of the HI holes, we have obtained and analyzed deep broad-band BVR and narrow-band H-alpha images of Ho II. We compare the optical and HI data and search for evidence of the expected star clusters in and around the HI holes. We also use the HI data to constrain models of the expected remnant stellar population. We show that in several of the holes the observed upper limits for the remnant cluster brightness are strongly inconsistent with the SNe hypothesis described in Puche et al. Moreover, many of the HI holes are located in regions of very low optical surface brightness which show no indication of recent star formation. Here we present our findings and explore possible alternative explanations for the existence of the HI holes in Ho II, including the suggestion that some of the holes were produced by Gamma-ray burst events.Comment: 30 pages, including 6 tables and 3 images. To appear in Astron. Journal (June 1999

    Simple Models for Turbulent Self-Regulation in Galaxy Disks

    Get PDF
    We propose that turbulent heating, wave pressure and gas exchanges between different regions of disks play a dominant role in determining the preferred, quasi-equilibrium, self-similar states of gas disks on large-scales. We present simple families of analytic, thermohydrodynamic models for these global states, which include terms for turbulent pressure and Reynolds stresses. Star formation rates, phase balances, and hydrodynamic forces are all tightly coupled and balanced. The models have stratified radial flows, with the cold gas slowly flowing inward in the midplane of the disk, and with the warm/hot phases that surround the midplane flowing outward. The models suggest a number of results that are in accord with observation, as well as some novel predictions, including the following. 1) The large-scale gas density and thermal phase distributions in galaxy disks can be explained as the result of turbulent heating and spatial couplings. 2) The turbulent pressures and stresses that drive radial outflows in the warm gas also allow a reduced circular velocity there. This effect was observed by Swaters, Sancisi and van der Hulst in NGC 891, a particularly turbulent edge-on disk. The models predict that the effect should be universal in such disks. 3) They suggest that a star formation rate like the phenomenological Schmidt Law is the natural result of global thermohydrodynamical balance, and may not obtain in disks far from equilibrium. (Abridged)Comment: 37 pages, 1 gif figure, accepted for publication in the Astrophysical Journa

    HI power spectrum of the spiral galaxy NGC628

    Full text link
    We have measured the HI power spectrum of the nearly face-on spiral galaxy NGC628 (M74) using a visibility based estimator. The power spectrum is well fitted by a power law P(U)=AUαP(U)=AU^{\alpha}, with α=−1.6±0.2\alpha =- 1.6\pm0.2 over the length scale 800pcto8kpc800 {\rm pc} {\rm to} 8 {\rm kpc}. The slope is found to be independent of the width of the velocity channel. This value of the slope is a little more than one in excess of what has been seen at considerably smaller length scales in the Milky-Way, Small Magellanic Cloud (LMC), Large Magellanic Cloud (SMC) and the dwarf galaxy DDO210. We interpret this difference as indicating a transition from three dimensional turbulence at small scales to two dimensional turbulence in the plane of the galaxy's disk at length scales larger than galaxy's HI scale height. The slope measured here is similar to that found at large scales in the LMC. Our analysis also places an upper limit to the galaxy's scale height at $800\ {\rm pc}$ .Comment: 4 Pages, 2 Figures, 1 Table. Accepted for Publication in MNRAS LETTER

    HALOGAS observations of NGC 5023 and UGC 2082: Modeling of non-cylindrically symmetric gas distributions in edge-on galaxies

    Get PDF
    In recent years it has become clear that the vertical structure of disk galaxies is a key ingredient for understanding galaxy evolution. In particular, the presence and structure of extra-planar gas has been a focus of research. The Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey aims to provide a census on the rate of cold neutral gas accretion in nearby galaxies as well as a statistically significant set of galaxies that can be investigated for their extra-planar gas properties. In order to better understand the the vertical structure of the neutral hydrogen in the two edge-on HALOGAS galaxies NGC 5023 and UGC 2082 we construct detailed tilted ring models. The addition of distortions resembling arcs or spiral arms significantly improves the fit of the models to these galaxies. In the case of UGC 2082 no vertical gradient in rotational velocity is required in either symmetric models nor non-symmetric models to match the observations. The best fitting model features two arcs of large vertical extent that may be due to accretion. In the case of NGC 5023 a vertical gradient is required in symmetric models (dV/dz =−14.9±3.8-14.9\pm3.8 km s−1^{-1} kpc−1^{-1}) and its magnitude is significantly lowered when non-symmetric models are considered (dV/dz =−9.4±3.8-9.4\pm3.8 km s−1^{-1} kpc−1^{-1}). Additionally it is shown that the underlying disk of NGC 5023 can be made symmetric, in all parameters except the warp, in non-symmetric models. In comparison to the "classical" modeling these models fit the data significantly better with a limited addition of free parameters.Comment: 27 Pages, 22 Figures. Accepted for publication in MNRA

    A multilevel study of neighborhood disadvantage, individual socioeconomic position, and body mass index: Exploring cross-level interaction effects

    Get PDF
    This study examined associations between neighborhood disadvantage and body mass index (BMI), and tested whether this differed by level of individual socioeconomic position (SEP). Data were from 9953 residents living in 200 neighborhoods in Brisbane, Australia in 2007. Multilevel linear regression analyses were undertaken by gender to determine associations between neighborhood disadvantage, individual SEP (education, occupation and household income) and BMI (from self-reported height and weight); with cross-level interactions testing whether the relationship between neighborhood disadvantage and BMI differed by level of individual SEP. Both men (Quintile 4, where Quintile 5 is the most disadvantaged β = 0.66 95%CI 0.20, 1.12) and women (Quintile 5 β = 1.32 95%CI 0.76, 1.87) from more disadvantaged neighborhoods had a higher BMI. BMI was significantly higher for those with lower educational attainment (men β = 0.71 95%CI 0.36, 1.07 and women β = 1.66 95%CI 0.78, 1.54), and significantly lower for those in blue collar occupations (men β = −0.67 95%CI −1.09, −0.25 and women β = −0.71 95%CI −1.40, −0.01). Among men, those with a lower income had a significantly lower BMI, while the opposite was found among women. None of the interaction models had a significantly better fit than the random intercept models. The relationship between neighborhood disadvantage and BMI did not differ by level of education, occupation, or household income. This suggests that individual SEP is unlikely to be an effector modifier of the relationship between neighborhood disadvantage and BMI. Further research is required to assist policy-makers to make more informed decisions about where to intervene to counteract BMI-inequalities

    Agent based demand flexibility management for wind power forecasting error mitigation using the SG-BEMS framework

    Get PDF
    The integration process of renewable energy sources (RES) and distributed energy resources (DER) into the power system, is characterized by concerns that originate from their stochastic and uncontrollable nature. This means that system operators require reliable forecasting tools, in order to ensure efficient and reliable operation. Accordingly, this paper proposes the use of demand flexibility, to counteract the RES forecasting errors. For this purpose, distributed and decentralized intelligence is used, via the SG-BEMS framework, to invoke demand flexibility in a timely and effective fashion, while taking into account the negative effects on the building occupants comfort. Lastly, numerical results from a simulated case of study are presented, which confirm that demand flexibility can be used to mitigate the magnitude of forecast errors

    Modeling the Gas Flow in the Bar of NGC 1365

    Full text link
    We present new observations of the strongly-barred galaxy NGC 1365, including new photometric images and Fabry-Perot spectroscopy, as well as a detailed re-analysis of the neutral hydrogen observations from the VLA archive. We find the galaxy to be at once remarkably bi-symmetric in its I-band light distribution and strongly asymmetric in the distribution of dust and in the kinematics of the gas in the bar region. The velocity field mapped in the H-alpha line reveals bright HII regions with velocities that differ by 60 to 80 km/s from that of the surrounding gas, which may be due to remnants of infalling material. We have attempted hydrodynamic simulations of the bar flow to estimate the separate disk and halo masses, using two different dark matter halo models and covering a wide range of mass-to-light ratios (Upsilon) and bar pattern speeds (Omega_p). None of our models provides a compelling fit to the data, but they seem most nearly consistent with a fast bar, corotation at sim 1.2r_B, and Upsilon_I simeq 2.0 +- 1.0, implying a massive, but not fully maximal, disk. The fitted dark halos are unusually concentrated, a requirement driven by the declining outer rotation curve.Comment: 43 pages, 15 figures, accepted to appear in Ap

    The Kinematically Measured Pattern Speeds of NGC 2523 and NGC 4245

    Full text link
    We have applied the Tremaine-Weinberg continuity equation method to derive the bar pattern speed in the SB(r)b galaxy NGC 2523 and the SB(r)0/a galaxy NGC 4245 using the Calcium Triplet absorption lines. These galaxies were selected because they have strong inner rings which can be used as independent tracers of the pattern speed. The pattern speed of NGC 2523 is 26.4 ±\pm 6.1 km s−1^{-1} kpc−1^{-1}, assuming an inclination of 49.7∘^{\circ} and a distance of 51.0 Mpc. The pattern speed of NGC 4245 is 75.5 ±\pm 31.3 km s−1^{-1} kpc−1^{-1}, assuming an inclination of 35.4∘^{\circ} and a distance of 12.6 Mpc. The ratio of the corotation radius to the bar radius of NGC 2523 and NGC 4245 is 1.4 ±\pm 0.3 and 1.1 ±\pm 0.5, respectively. These values place the bright inner rings near and slightly inside the corotation radius, as predicted by barred galaxy theory. Within the uncertainties, both galaxies are found to have fast bars that likely indicate dark halos of low central concentration. The photometric properties, bar strengths, and disk stabilities of both galaxies are also discussed.Comment: Accepted for publication in The Astronomical Journal, 11 figures, 2 table

    Where are the High Velocity Clouds in Local Group Analogs?

    Full text link
    High-velocity clouds (HVCs) are clouds of HI seen around the Milky Way with velocities inconsistent with Galactic rotation, have unknown distances and masses and controversial origins. One possibility is that HVCs are associated with the small dark matter halos seen in models of galaxy formation and distributed at distances of 150 kpc - 1 Mpc. We report on our attempts to detect the analogs to such putative extragalactic clouds in three groups of galaxies similar to our own Local Group using the ATNF Parkes telescope and Compact Array. Eleven dwarf galaxies were found, but no HI clouds lacking stars were detected. Using the population of compact HVCs around the Milky Way as a template, we find that our non-detection of analogs implies that they must be clustered within 160 kpc of the Milky Way (and other galaxies) with an average HI mass <4x10^5 M(sun) at the 95% confidence level. This is in accordance with recent limits derived by other authors. If our groups are true analogs to the Local Group, then this makes the original Blitz et al. and Braun & Burton picture of HVCs residing out to 1 Mpc from the Milky Way extremely unlikely. The total HI mass in HVCs, < 10^8 M(sun), implies that there is not a large reservoir of neutral hydrogen waiting to be accreted onto the Milky Way. Any substantial reservoir of baryonic matter must be mostly ionized or condensed enough as to be undetectable.Comment: 5 pages, 2 figures, ApJ letters, in pres

    A Warp in Progress : H I and Radio Continuum Observations of the Spiral NGC 3145

    Get PDF
    Date of Acceptance: 16/06/2015We present VLA H I and 6 cm radio continuum observations of the spiral NGC 3145 and H I observations of its two companions, NGC 3143 and PGC 029578. In optical images NGC 3145 has stellar arms that appear to cross, forming "X"-features. Our radio continuum observations rule out shock fronts at 3 of the 4 "X"-features. In the middle-to-outer disk, the H I line-profiles of NGC 3145 are skewed. Relative to the disk, the gas in the skewed wing of the line-profiles has z-motions away from us on the approaching side of the galaxy and z-motions of about the same magnitude (about 40 km/s) towards us on the receding side. These warping motions imply that there has been a perturbation with a sizeable component perpendicular to the disk over large spatial scales. Two features in NGC 3145 have velocities indicating that they are out-of-plane tidal arms. One is an apparent branch of a main spiral arm; the velocity of the branch is 150 km/s greater than the spiral arm where they appear to intersect in projection. The other is an arm that forms 3 of the "X"-features. It differs in velocity by 56 km/s from the disk at the same projected location. Based on its SFR and H I properties, NGC 3143 is the more likely of the two companions to have interacted with NGC 3145 recently. A simple analytic model demonstrates that an encounter between NGC 3143 and NGC 3145 is a plausible explanation for the observed warping motions in NGC 3145.Peer reviewe
    • …
    corecore