758 research outputs found

    Quantum phases of hardcore bosons with repulsive dipolar density-density interactions on two-dimensional lattices

    Full text link
    We analyse the ground-state quantum phase diagram of hardcore Bosons interacting with repulsive dipolar potentials. The bosons dynamics is described by the extended-Bose-Hubbard Hamiltonian on a two-dimensional lattice. The ground state results from the interplay between the lattice geometry and the long-range interactions, which we account for by means of a classical spin mean-field approach limited by the size of the considered unit cells. This extended classical spin mean-field theory accounts for the long-range density-density interaction without truncation. We consider three different lattice geometries: square, honeycomb, and triangular. In the limit of zero hopping the ground state is always a devil's staircase of solid (gapped) phases. Such crystalline phases with broken translational symmetry are robust with respect to finite hopping amplitudes. At intermediate hopping amplitudes, these gapped phases melt, giving rise to various lattice supersolid phases, which can have exotic features with multiple sublattice densities. At sufficiently large hoppings the ground state is a superfluid. The stability of phases predicted by our approach is gauged by comparison to the known quantum phase diagrams of the Bose-Hubbard model with nearest-neighbour interactions as well as quantum Monte Carlo simulations for the dipolar case on the square lattice. Our results are of immediate relevance for experimental realisations of self-organised crystalline ordering patterns in analogue quantum simulators, e.g., with ultracold dipolar atoms in an optical lattice.Comment: 31 pages, 9 figure

    Systematic Analysis of Crystalline Phases in Bosonic Lattice Models with Algebraically Decaying Density-Density Interactions

    Full text link
    We propose a general approach to analyse diagonal ordering patterns in bosonic lattice models with algebraically decaying density-density interactions on arbitrary lattices. The key idea is a systematic search for the energetically best order on all unit cells of the lattice up to a given extent. Using resummed couplings we evaluate the energy of the ordering patterns in the thermodynamic limit using finite unit cells. We apply the proposed approach to the atomic limit of the extended Bose-Hubbard model on the triangular lattice at fillings f=1/2f=1/2 and f=1f=1. We investigate the ground-state properties of the antiferromagnetic long-range Ising model on the triangular lattice and determine a six-fold degenerate plain-stripe phase to be the ground state for finite decay exponents. We also probe the classical limit of the Fendley-Sengupta-Sachdev model describing Rydberg atom arrays. We focus on arrangements where the atoms are placed on the sites or links of the Kagome lattice. \changed{Our method provides a general framework to treat cristalline structures resulting from long-range interactions.Comment: 35 pages, 11 figure

    FlashCam: A fully digital camera for CTA telescopes

    Full text link
    The future Cherenkov Telescope Array (CTA) will consist of several tens of telescopes of different mirror sizes. CTA will provide next generation sensitivity to very high energy photons from few tens of GeV to >100 TeV. Several focal plane instrumentation options are currently being evaluated inside the CTA consortium. In this paper, the current status of the FlashCam prototyping project is described. FlashCam is based on a fully digital camera readout concept and features a clean separation between photon detector plane and signal digitization/triggering electronics.Comment: In Proceedings of the 2012 Heidelberg Symposium on High Energy Gamma-Ray Astronomy. All CTA contributions at arXiv:1211.184

    Draft genome sequence of Escherichia coli O157:H7 ATCC 35150 and a nalidixic acid-resistant mutant derivative

    Get PDF
    Shiga toxin-producing Escherichia coli strains, occasionally isolated from food, are of public health importance. Here, we report on the 5.30-Mbp draft genome sequence of E. coli O157:H7 EDL931 (strain ATCC 35150) and the 5.32-Mbp draft genome sequence of a nalidixic acid-resistant mutant derivative used as a distinguishable control strain in food-testing laboratories

    Arbuscular Mycorrhizal Fungi Taxa Show Variable Patterns of Micro-Scale Dispersal in Prairie Restorations

    Get PDF
    Human land use disturbance is a major contributor to the loss of natural plant communities, and this is particularly true in areas used for agriculture, such as the Midwestern tallgrass prairies of the United States. Previous work has shown that arbuscular mycorrhizal fungi (AMF) additions can increase native plant survival and success in plant community restorations, but the dispersal of AMF in these systems is poorly understood. In this study, we examined the dispersal of AMF taxa inoculated into four tallgrass prairie restorations. At each site, we inoculated native plant species with greenhouse-cultured native AMF taxa or whole soil collected from a nearby unplowed prairie. We monitored AMF dispersal, AMF biomass, plant growth, and plant community composition, at different distances from inoculation. In two sites, we assessed the role of plant hosts in dispersal, by placing known AMF hosts in a “bridge” and “island” pattern on either side of the inoculation points. We found that AMF taxa differ in their dispersal ability, with some taxa spreading to 2-m in the first year and others remaining closer to the inoculation point. We also found evidence that AMF spread altered non-inoculated neighboring plant growth and community composition in certain sites. These results represent the most comprehensive attempt to date to evaluate AMF spread

    Aspirin but not ibuprofen use is associated with reduced risk of prostate cancer: A PLCO Study

    Get PDF
    Background: Although most epidemiological studies suggest that non-steroidal anti-inflammatory drug use is inversely associated with prostate cancer risk, the magnitude and specificity of this association remain unclear. Methods: We examined self-reported aspirin and ibuprofen use in relation to prostate cancer risk among 29 450 men ages 55–74 who were initially screened for prostate cancer from 1993 to 2001 in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Men were followed from their first screening exam until 31 December 2009, during which 3575 cases of prostate cancer were identified. Results: After adjusting for potential confounders, the hazard ratios (HRs) of prostate cancer associated with \u3c1 and 1 pill of aspirin daily were 0.98 (95% confidence interval (CI), 0.90–1.07) and 0.92 (95% CI: 0.85–0.99), respectively, compared with never use (P for trend 0.04). The effect of taking at least one aspirin daily was more pronounced when restricting the analyses to men older than age 65 or men who had a history of cardiovascular-related diseases or arthritis (HR (95% CI); 0.87 (0.78–0.97), 0.89 (0.80–0.99), and 0.88 (0.78–1.00), respectively). The data did not support an association between ibuprofen use and prostate cancer risk. Conclusion: Daily aspirin use, but not ibuprofen use, was associated with lower risk of prostate cancer risk

    Non-adiabatic and time-resolved photoelectron spectroscopy for molecular systems

    Get PDF
    We quantify the non-adiabatic contributions to the vibronic sidebands of equilibrium and explicitly time-resolved non-equilibrium photoelectron spectra for a vibronic model system of Trans-Polyacetylene. Using exact diagonalization, we directly evaluate the sum-over-states expressions for the linear-response photocurrent. We show that spurious peaks appear in the Born-Oppenheimer approximation for the vibronic spectral function, which are not present in the exact spectral function of the system. The effect can be traced back to the factorized nature of the Born-Oppenheimer initial and final photoemission states and also persists when either only initial, or final states are replaced by correlated vibronic states. Only when correlated initial and final vibronic states are taken into account, the spurious spectral weights of the Born-Oppenheimer approximation are suppressed. In the non-equilibrium case, we illustrate for an initial Franck-Condon excitation and an explicit pump-pulse excitation how the vibronic wavepacket motion of the system can be traced in the time-resolved photoelectron spectra as function of the pump-probe delay

    Glucocorticoids Rapidly Activate cAMP Production via G\u3csub\u3eαs\u3c/sub\u3e to Initiate Non-Genomic Signaling That Contributes to One-Third of Their Canonical Genomic Effects

    Get PDF
    Glucocorticoids are widely used for the suppression of inflammation, but evidence is growing that they can have rapid, non-genomic actions that have been unappreciated. Diverse cell signaling effects have been reported for glucocorticoids, leading us to hypothesize that glucocorticoids alone can swiftly increase the 3′,5′-cyclic adenosine monophosphate (cAMP) production. We found that prednisone, fluticasone, budesonide, and progesterone each increased cAMP levels within 3 minutes without phosphodiesterase inhibitors by measuring real-time cAMP dynamics using the cAMP difference detector in situ assay in a variety of immortalized cell lines and primary human airway smooth muscle (HASM) cells. A membrane- impermeable glucocorticoid showed similarly rapid stimulation of cAMP, implying that responses are initiated at the cell surface. siRNA knockdown of Gαs virtually eliminated glucocorticoidstimulated cAMP responses, suggesting that these drugs activate the cAMP production via a G protein-coupled receptor. Estradiol had small effects on cAMP levels but G protein estrogen receptor antagonists had little effect on responses to any of the glucocorticoids tested. The genomic and non-genomic actions of budesonide were analyzed by RNA-Seq analysis of 24 hours treated HASM, with and without knockdown of Gαs. A 140-gene budesonide signature was identified, of which 48 genes represent a non-genomic signature that requires Gαs signaling. Collectively, this non-genomic cAMP signaling modality contributes to one-third of the gene expression changes induced by glucocorticoid treatment and shifts the view of how this important class of drugs exerts its effect
    • …
    corecore