40 research outputs found

    Cognitive impairment in multiple sclerosis: An exploratory analysis of environmental and lifestyle risk factors

    Get PDF
    BACKGROUND:Many potentially modifiable risk factors for MS are investigated. It is not known, however, if these factors also apply to MS-related cognitive impairment (CI), a frequent consequence of MS. OBJECTIVE:The aim of our study was to assess risk factors for CI in MS patients, focusing on environmental exposures, lifestyle and comorbidities. METHODS:We included MS patients referring to MS Centers in Florence and Barletta between 2014 and 2017. Neuropsychological performance was assessed through the Rao's battery and Stroop test, cognitive reserve (premorbid intelligence quotient-IQ) was evaluated using the National Adult Reading Test (NART). Potential risk factors were investigated through a semi-structured questionnaire. RESULTS:150 patients were included. CI was detected in 45 (30%) subjects and was associated with older age (p<0.005), older age at MS onset (p = 0.016), higher EDSS score (p<0.005), progressive disease course (p = 0.048) and lower premorbid IQ score (p<0.005). As for risk factors, CI was related with lower physical activity in childhood-adolescence (p<0.005). In women, hormonal therapy resulted to be protective against CI (p = 0.041). However, in the multivariable analysis, the only significant predictors of CI were older age (p<0.05; OR 1.06, 95% CI 1.02-1.10) and lower premorbid IQ (p<0.05; OR 0.93, 95% CI: 0.88-0.98). Removing IQ from the model, CI was associated with higher EDSS (p = 0.030; OR 1.25, 95% CI 1.02-1.53) and, marginally, previous physical activity (p = 0.066; OR 0.49, 95% CI: 0.23-1.05). CONCLUSIONS:Our findings suggest that physical activity in childhood-adolescence could be a contributor to cognitive reserve building, thus representing a potential protective factors for MS-related CI susceptible to preventive strategies

    Measurement of the permanent electric dipole moment of the neutron

    Get PDF
    We present the result of an experiment to measure the electric dipole moment EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons (UCN). Our measurement stands in the long history of EDM experiments probing physics violating time reversal invariance. The salient features of this experiment were the use of a Hg-199 co-magnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic field changes. The statistical analysis was performed on blinded datasets by two separate groups while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{\rm n} = (0.0\pm1.1_{\rm stat}\pm0.2_{\rmsys})\times10^{-26}e\,{\rm cm}

    The Design of the n2EDM Experiment

    Get PDF
    We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is of the experimental method and setup is given, the sensitivity requirements for the apparatus are derived, and its technical design is described

    The very large n2EDM magnetically shielded room with an exceptional performance for fundamental physics measurements.

    Get PDF
    We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute, which features an interior cubic volume with each side of length 2.92 m, thus providing an accessible space of 25 m3. The MSR has 87 openings of diameter up to 220 mm for operating the experimental apparatus inside and an intermediate space between the layers for housing sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1 m3 below 100 pT and a field below 600 pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2 μT peak-to-peak signal is about 100 000 in all three spatial directions and increases rapidly with frequency to reach 108 above 1 Hz

    Johnson-Nyquist noise effects in neutron electric-dipole-moment experiments

    Get PDF
    Magnetic Johnson-Nyquist noise (JNN) originating from metal electrodes, used to create a static electric field in neutron electric-dipole-moment (nEDM) experiments, may limit the sensitivity of measurements. We present here a dedicated study on JNN applied to a large-scale long-measurement-time experiment with the implementation of a comagnetometry. In this study, we derive surface- and volume-averaged root-mean-square normal noise amplitudes at a certain frequency bandwidth for a cylindrical geometry. In addition, we model the source of noise as a finite number of current dipoles and demonstrate a method to simulate temporal and three-dimensional spatial dependencies of JNN. The calculations are applied to estimate the impact of JNN on measurements with the new apparatus, n2EDM, at the Paul Scherrer Institute. We demonstrate that the performances of the optically pumped Cs133 magnetometers and Hg199 comagnetometers, which will be used in the apparatus, are not limited by JNN. Further, we find that, in measurements deploying a comagnetometer system, the impact of JNN is negligible for nEDM searches down to a sensitivity of 4Ă—10-28ecm in a single measurement; therefore, the use of economically and mechanically favored solid aluminum electrodes is possible

    The design of the n2EDM experiment: nEDM Collaboration

    Get PDF
    We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is of the experimental method and setup is given, the sensitivity requirements for the apparatus are derived, and its technical design is described

    Elementary technical mathematics

    No full text
    Bai

    Elementary Technical Mathematics With Calculus

    No full text
    xiv, 958 Hal.; 26 C
    corecore