55,985 research outputs found

    Design and testing of liquid hydrogen-cooled, ultrahigh-speed ball bearings

    Get PDF
    Large-bore, liquid hydrogen-cooled, ultrahigh-speed, rolling contact bearings of an optimum design allow optimization of large rocket engine turbopumps in which bearing speed is a limiting factor. Optimum design for the bearings resulted from an application of liquid hydrogen used as a coolant

    Trajectory-Based Dynamic Map Labeling

    Full text link
    In this paper we introduce trajectory-based labeling, a new variant of dynamic map labeling, where a movement trajectory for the map viewport is given. We define a general labeling model and study the active range maximization problem in this model. The problem is NP-complete and W[1]-hard. In the restricted, yet practically relevant case that no more than k labels can be active at any time, we give polynomial-time algorithms. For the general case we present a practical ILP formulation with an experimental evaluation as well as approximation algorithms.Comment: 19 pages, 7 figures, extended version of a paper to appear at ISAAC 201

    Cost Systems and Operating Statistics

    Get PDF

    Motor-bus Accounting

    Get PDF

    Greenhouse Accounting

    Get PDF

    A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus

    Get PDF
    Native horse mucus is characterized with micro- and macrorheology and compared to hydroxyethylcellulose (HEC) gel as a model. Both systems show comparable viscoelastic properties on the microscale and for the HEC the macrorheology is in good agreement with the microrheology. For the mucus, the viscoelastic moduli on the macroscale are several orders of magnitude larger than on the microscale. Large amplitude oscillatory shear experiments show that the mucus responds nonlinearly at much smaller deformations than HEC. This behavior fosters the assumption that the mucus has a foam like structure on the microscale compared to the typical mesh like structure of the HEC, a model that is supported by cryogenic-scanning-electron-microscopy (CSEM) images. These images allow also to determine the relative amount of volume that is occupied by the pores and the scaffold. Consequently, we can estimate the elastic modulus of the scaffold. We conclude that this particular foam like microstructure should be considered as a key factor for the transport of particulate matter which plays a central role in mucus function with respect to particle penetration. The mesh properties composed of very different components are responsible for macroscopic and microscopic behavior being part of particles fate after landing.Comment: Accepted for publication in the Journal of the Mechanical Behavior of Biomedical Material

    Reducing sample variance: halo biasing, non-linearity and stochasticity

    Get PDF
    Comparing clustering of differently biased tracers of the dark matter distribution offers the opportunity to reduce the cosmic variance error in the measurement of certain cosmological parameters. We develop a formalism that includes bias non-linearities and stochasticity. Our formalism is general enough that can be used to optimise survey design and tracers selection and optimally split (or combine) tracers to minimise the error on the cosmologically interesting quantities. Our approach generalises the one presented by McDonald & Seljak (2009) of circumventing sample variance in the measurement of fdlnD/dlnaf\equiv d \ln D/d\ln a. We analyse how the bias, the noise, the non-linearity and stochasticity affect the measurements of DfDf and explore in which signal-to-noise regime it is significantly advantageous to split a galaxy sample in two differently-biased tracers. We use N-body simulations to find realistic values for the parameters describing the bias properties of dark matter haloes of different masses and their number density. We find that, even if dark matter haloes could be used as tracers and selected in an idealised way, for realistic haloes, the sample variance limit can be reduced only by up to a factor σ2tr/σ1tr0.6\sigma_{2tr}/\sigma_{1tr}\simeq 0.6. This would still correspond to the gain from a three times larger survey volume if the two tracers were not to be split. Before any practical application one should bear in mind that these findings apply to dark matter haloes as tracers, while realistic surveys would select galaxies: the galaxy-host halo relation is likely to introduce extra stochasticity, which may reduce the gain further.Comment: 21 pages, 13 figures. Published version in MNRA
    corecore