3,692 research outputs found

    Hot-water aquifer storage: A field test

    Get PDF
    The basic water injection cycle used in a large-scale field study of heat storage in a confined aquifer near Mobile, Alabama is described. Water was pumped from an upper semi-confined aquifer, passed through a boiler where it was heated to a temperature of about 55 C, and injected into a medium sand confined aquifer. The injection well has a 6-inch (15-cm) partially-penetrating steel screen. The top of the storage formation is about 40 meters below the surface and the formation thickness is about 21 meters. In the first cycle, after a storage period of 51 days, the injection well was pumped until the temperature of the recovered water dropped to 33 c. At that point 55,300 cubic meters of water had been withdrawn and 66 percent of the injected energy had been recovered. The recovery period for the second cycle continued until the water temperature was 27.5 C and 100,100 cubic meters of water was recovered. At the end of the cycle about 90 percent of the energy injected during the cycle had been recovered

    The Impacts of Foot and Mouth Disease Outbreaks on the Brazilian Meat Market

    Get PDF
    This study uses unrestricted vector autoregression method and historical decomposition with directed acyclic graphs to quantity the impacts of the foot and mouth disease outbreak on the Brazilian meat market for different levels of the industry (export, wholesale and farm). The imposition of an import ban by Russia on Brazilian meat exports is also analyzed. Results show that beef, pork, and chicken export prices all decreased after the FMD outbreak. More importantly, our findings indicate that all prices ended up recovering after the removal of the import ban by Russia in December 2007. As for the price margins in both beef and pork meat supply chains, the export-to-farm and export-to-wholesale margins were found to be very close to each other. On the other hand, the chicken price margin at the export level relative to the farm and wholesale levels had opposing directions trend movements. Finally, the historical decomposition of analysis of the export beef price revealed that the removal of the Russian ban on Brazilian meat imports had a very drastic positive influence on the beef industry supply chain in general.foot and mouth disease, Brazilian meat market, vector autoregression model, historical decomposition, directed acyclic graphs., Food Consumption/Nutrition/Food Safety, International Relations/Trade, Livestock Production/Industries,

    Density-density functionals and effective potentials in many-body electronic structure calculations

    Full text link
    We demonstrate the existence of different density-density functionals designed to retain selected properties of the many-body ground state in a non-interacting solution starting from the standard density functional theory ground state. We focus on diffusion quantum Monte Carlo applications that require trial wave functions with optimal Fermion nodes. The theory is extensible and can be used to understand current practices in several electronic structure methods within a generalized density functional framework. The theory justifies and stimulates the search of optimal empirical density functionals and effective potentials for accurate calculations of the properties of real materials, but also cautions on the limits of their applicability. The concepts are tested and validated with a near-analytic model.Comment: five figure

    High-density correlation energy expansion of the one-dimensional uniform electron gas

    Full text link
    We show that the expression of the high-density (i.e small-rsr_s) correlation energy per electron for the one-dimensional uniform electron gas can be obtained by conventional perturbation theory and is of the form \Ec(r_s) = -\pi^2/360 + 0.00845 r_s + ..., where rsr_s is the average radius of an electron. Combining these new results with the low-density correlation energy expansion, we propose a local-density approximation correlation functional, which deviates by a maximum of 0.1 millihartree compared to the benchmark DMC calculations.Comment: 7 pages, 2 figures, 3 tables, accepted for publication in J. Chem. Phy

    Novel properties of the Kohn-Sham exchange potential for open systems: application to the two-dimensional electron gas

    Full text link
    The properties of the Kohn-Sham (KS) exchange potential for open systems in thermodynamical equilibrium, where the number of particles is non-conserved, are analyzed with the Optimized Effective Potential (OEP) method of Density Functional Theory (DFT) at zero temperature. The quasi two-dimensional electron gas (2DEG) is used as an illustrative example. The main findings are that the KS exchange potential builds a significant barrier-like structure under slight population of the second subband, and that both the asymptotic value of the KS exchange potential and the inter-subband energy jump discontinuously at the one-subband (1S) -> two-subband (2S) transition. The results obtained in this system offer new insights on open problems of semiconductors, such as the band-gap underestimation and the band-gap renormalization by photo-excited carriers.Comment: 7 pages, 3 figures, uses epl.cls(included), accepted for publication in Europhysics Letter

    Inter-cluster reactivity of Metallo-aromatic and anti-aromatic Compounds and Their Applications in Molecular Electronics: A Theoretical Investigation

    Full text link
    Local reactivity descriptors such as the condensed local softness and Fukui function have been employed to investigate the inter-cluster reactivity of the metallo-aromatic (Al4Li- and Al4Na-) and anti-aromatic (Al4Li4 and Al4Na4) compounds. We use the concept of group softness and group Fukui function to study the strength of the nucleophilicity of the Al4 unit in these compounds. Our analysis shows that the trend of nucleophilicity of the Al4 unit in the above clusters is as follows; Al4Li- > Al4Na- > Al4Li4 > Al4Na 4 For the first time we have used the reactivity descriptors to show that these clusters can act as electron donating systems and thus can be used as a molecular cathode.Comment: 23 pages, 1 figure and 1 table of conten

    Calculation of the energy spectrum of a two-electron spherical quantum dot

    Full text link
    We study the energy spectrum of the two-electron spherical parabolic quantum dot using the exact Schroedinger, the Hartree-Fock, and the Kohn-Sham equations. The results obtained by applying the shifted-1/N method are compared with those obtained by using an accurate numerical technique, showing that the relative error is reasonably small, although the first method consistently underestimates the correct values. The approximate ground-state Hartree-Fock and local-density Kohn-Sham energies, estimated using the shifted-1/N method, are compared with accurate numerical self-consistent solutions. We make some perturbative analyses of the exact energy in terms of the confinement strength, and we propose some interpolation formulae. Similar analysis is made for both mean-field approximations and interpolation formulae are also proposed for these exchange-only ground-state cases.Comment: 18 pages, LaTeX, 2 figures-ep

    Spin gaps and spin-flip energies in density-functional theory

    Full text link
    Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is know about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single particle calculations tend to overestimate spin gaps while they underestimate charge gaps.Comment: 11 pages, 1 figure, 3 table

    Spin and Conductance-Peak-Spacing Distributions in Large Quantum Dots: A Density Functional Theory Study

    Full text link
    We use spin-density-functional theory to study the spacing between conductance peaks and the ground-state spin of 2D model quantum dots with up to 200 electrons. Distributions for different ranges of electron number are obtained in both symmetric and asymmetric potentials. The even/odd effect is pronounced for small symmetric dots but vanishes for large asymmetric ones, suggesting substantially stronger interaction effects than expected. The fraction of high-spin ground states is remarkably large.Comment: 4 pages, 3 figure

    A priori Wannier functions from modified Hartree-Fock and Kohn-Sham equations

    Full text link
    The Hartree-Fock equations are modified to directly yield Wannier functions following a proposal of Shukla et al. [Chem. Phys. Lett. 262, 213-218 (1996)]. This approach circumvents the a posteriori application of the Wannier transformation to Bloch functions. I give a novel and rigorous derivation of the relevant equations by introducing an orthogonalizing potential to ensure the orthogonality among the resulting functions. The properties of these, so-called a priori Wannier functions, are analyzed and the relation of the modified Hartree-Fock equations to the conventional, Bloch-function-based equations is elucidated. It is pointed out that the modified equations offer a different route to maximally localized Wannier functions. Their computational solution is found to involve an effort that is comparable to the effort for the solution of the conventional equations. Above all, I show how a priori Wannier functions can be obtained by a modification of the Kohn-Sham equations of density-functional theory.Comment: 7 pages, RevTeX4, revise
    • …
    corecore