3,081 research outputs found

    Harmonic decomposition to describe the nonlinear evolution of stimulated Brillouin scattering

    No full text
    An efficient method to describe the nonlinear evolution of stimulated Brillouin scattering(SBS) in long scale-length plasmas is presented in the limit of a fluid description. The method is based on the decomposition of the various functions characterizing the plasma into their long- and short-wavelength components. It makes it possible to describe self-consistently the interplay between the plasmahydrodynamics,stimulated Brillouin scattering, and the generation of harmonics of the excited ion acoustic wave(IAW). This description is benchmarked numerically in one and two spatial dimensions [one dimensional (1D), two dimensional (2D)], by comparing the numerical results obtained along this method with those provided by a numerical code in which the decomposition into separate spatial scales is not made. The decomposition method proves to be very efficient in terms of computing time, especially in 2D, and very reliable, even in the extreme case of undamped ion acoustic waves. A novel picture of the SBS nonlinear behavior arises, in which the IAWharmonics generation gives rise to local defects appearing in the density and velocity hydrodynamics profiles. Consequently, SBS develops in various spatial domains which seem to be decorrelated one from each other, so that the backscattered Brillouin light is the sum of various backscatteredwaves generated in several independent spatial domains. It follows that the SBSreflectivity is chaotic in time and the resulting time-averaged value is significantly reduced as compared to the case when the IAWharmonics generation and flow modification are ignored. From the results of extensive numerical simulations carried out in 1D and 2D, we are able to infer the SBSreflectivity scaling law as a function of the plasma parameters and laser intensity, in the limit where the kinetic effects are negligible. It appears that this scaling law can be derived in the limit where the IAWharmonics generation is modeled simply by a nonlinear frequency shift

    Dielectric properties of BiB3O6 crystal in the sub-THz range

    Get PDF
    We present the thorough studies of dielectric properties of BiB3O6 (BIBO) crystal in the sub-THz range. We observe a large birefringence Δn = nZ −nX = 1.5 and the values of absorption coefficients of all three axes to be less than 0.5 cm−1. The difference from visible range in angle ϕ between the axes z and X is found to be more than 6°. The simulated phase-matching curves show the optimal value of the angle θ to be around 25.5°±1° for an efficient millimeter-wave generation under the pump of 1064 nm laser radiation

    The EMCCD-Based Speckle Interferometer of the BTA 6-m Telescope: Description and First Results

    Full text link
    The description is given for the speckle interferometer of the BTA 6-m telescope of the SAO RAS based on a new detector with an electron multiplication CCD. The main components of the instrument are microscope objectives, interference filters and atmospheric dispersion correction prisms. The PhotonMAX-512B CCD camera using a back-illuminated CCD97 allows up to 20 speckle images (with 512×\times512 pix resolution) per second storage on the hard drive. Due to high quantum efficiency (93% in the maximum at 550 nm), and high transmission of its optical elements, the new camera can be used for diffraction-limited (0.02'') image reconstruction of 15m15^{m} stars under good seeing conditions. The main advantages of the new system over the previous generation BTA speckle interferometer are examined.Comment: 18 pages, 14 figure

    Nearby low-mass triple system GJ795

    Get PDF
    We report the results of our optical speckle-interferometric observations of the nearby triple system GJ795 performed with the 6-m BTA telescope with diffraction-limited angular resolution. The three components of the system were optically resolved for the first time. Position measurements allowed us to determine the elements of the inner orbit of the triple system. We use the measured magnitude differences to estimate the absolute magnitudes and spectral types of the components of the triple: MVAaM_{V}^{Aa}=7.31±\pm0.08, MVAbM_{V}^{Ab}=8.66±\pm0.10, MVBM_{V}^{B}=8.42±\pm0.10, SpAaSp_{Aa} \approxK5, SpAbSp_{Ab} \approxK9, SpBSp_{B} \approxK8. The total mass of the system is equal to ΣMAB\Sigma\mathcal{M}_{AB}=1.69±0.27M\pm0.27\mathcal{M}_{\odot}. We show GJ795 to be a hierarchical triple system which satisfies the empirical stability criteria.Comment: 6 pages, 2 figures, published in Astrophysical Bulleti

    The seasonal cycle of the greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia

    No full text
    International audienceCarbon dioxide and methane fluxes were measured at a tundra site near Chokurdakh, in the lowlands of the Indigirka river in north-east Siberia. This site is one of the few stations on Russian tundra and it is different from most other tundra flux stations in its continentality. A suite of methods was applied to determine the fluxes of NEE, GPP, Reco and methane, including eddy covariance, chambers and leaf cuvettes. Net carbon dioxide fluxes were unusually high, compared with other tundra sites, with NEE=?92 g C m?2 yr?1, which is composed of an Reco=+141 g C m?2 yr?1 and GPP=?232 g C m?2 yr?1. This large carbon dioxide sink may be explained by the continental climate, that is reflected in low winter soil temperatures (?14°C), reducing the respiration rates, and short, relatively warm summers, stimulating high photosynthesis rates. Interannual variability in GPP was dominated by the frequency of light limitation (Rg ?2), whereas Reco depends most directly on soil temperature and time in the growing season, which serves as a proxy of the combined effects of active layer depth, leaf area index, soil moisture and substrate availability. The methane flux, in units of global warming potential, was +28 g C-CO2e m?2 yr?1, so that the greenhouse gas balance was ?64 g C-CO2e m?2 yr?1. Methane fluxes depended only slightly on soil temperature and were highly sensitive to hydrological conditions and vegetation composition

    Mutated CaV2.1 channels dysregulate CASK/P2X3 signaling in mouse trigeminal sensory neurons of R192Q Cacna1a knock-in mice

    Get PDF
    Background: ATP-gated P2X3 receptors of sensory ganglion neurons are important transducers of pain as they adapt their expression and function in response to acute and chronic nociceptive signals. The present study investigated the role of calcium/calmodulin-dependent serine protein kinase (CASK) in controlling P2X3 receptor expression and function in trigeminal ganglia from Cacna1a R192Q-mutated knock-in (KI) mice, a genetic model for familial hemiplegic migraine type-1.Results: KI ganglion neurons showed more abundant CASK/P2X3 receptor complex at membrane level, a result that likely originated from gain-of-function effects of R192Q-mutated CaV2.1 channels and downstream enhanced CaMKII activity. The selective CaV2.1 channel blocker \u3c9-Agatoxin IVA and the CaMKII inhibitor KN-93 were sufficient to return CASK/P2X3 co-expression to WT levels. After CASK silencing, P2X3 receptor expression was decreased in both WT and KI ganglia, supporting the role of CASK in P2X3 receptor stabilization. This process was functionally observed as reduced P2X3 receptor currents.Conclusions: We propose that, in trigeminal sensory neurons, the CASK/P2X3 complex has a dynamic nature depending on intracellular calcium and related signaling, that are enhanced in a transgenic mouse model of genetic hemiplegic migraine. \ua9 2013 Gnanasekaran et al.; licensee BioMed Central Ltd
    corecore