13,052 research outputs found

    Evidence from Rb–Sr mineral ages for multiple orogenic events in the Caledonides of Shetland, Scotland

    Get PDF
    Shetland occupies a unique central location within the North Atlantic Caledonides. Thirty-three new high-precision Rb–Sr mineral ages indicate a polyorogenic history. Ages of 723–702 Ma obtained from the vicinity of the Wester Keolka Shear Zone indicate a Neoproterozoic (Knoydartian) age and preclude its correlation with the Silurian Moine Thrust. Ordovician ages of c. 480–443 Ma obtained from the Yell Sound Group and the East Mainland Succession constrain deformation fabrics and metamorphic assemblages to have formed during Grampian accretionary orogenic events, broadly contemporaneously with orogenesis of the Dalradian Supergroup in Ireland and mainland Scotland. The relative paucity of Silurian ages is attributed to a likely location at a high structural level in the Scandian nappe pile relative to mainland Scotland. Ages of c. 416 and c. 411 Ma for the Uyea Shear Zone suggest a late orogenic evolution that has more in common with East Greenland and Norway than with northern mainland Scotland

    Towards a portable and future-proof particle-in-cell plasma physics code

    Get PDF
    We present the first reported OpenCL implementation of EPOCH3D, an extensible particle-in-cell plasma physics code developed at the University of Warwick. We document the challenges and successes of this porting effort, and compare the performance of our implementation executing on a wide variety of hardware from multiple vendors. The focus of our work is on understanding the suitability of existing algorithms for future accelerator-based architectures, and identifying the changes necessary to achieve performance portability for particle-in-cell plasma physics codes. We achieve good levels of performance with limited changes to the algorithmic behaviour of the code. However, our results suggest that a fundamental change to EPOCH3D’s current accumulation step (and its dependency on atomic operations) is necessary in order to fully utilise the massive levels of parallelism supported by emerging parallel architectures

    Hard X-ray selected giant radio galaxies - I. The X-ray properties and radio connection

    Get PDF
    We present the first broad-band X-ray study of the nuclei of 14 hard X-ray selected giant radio galaxies, based both on the literature and on the analysis of archival X-ray data from NuSTAR, XMM-Newton, Swift and INTEGRAL. The X-ray properties of the sources are consistent with an accretion-related X-ray emission, likely originating from an X-ray corona coupled to a radiatively efficient accretion flow. We find a correlation between the X-ray luminosity and the radio core luminosity, consistent with that expected for AGNs powered by efficient accretion. In most sources, the luminosity of the radio lobes and the estimated jet power are relatively low compared with the nuclear X-ray emission. This indicates that either the nucleus is more powerful than in the past, consistent with a restarting of the central engine, or that the giant lobes are dimmer due to expansion losses.Comment: 11 pages, 3 figures. Accepted for publication in MNRA

    Establishing the boundaries: the hippocampal contribution to imagining scenes

    Get PDF
    When we visualize scenes, either from our own past or invented, we impose a viewpoint for our “mind's eye” and we experience the resulting image as spatially coherent from that viewpoint. The hippocampus has been implicated in this process, but its precise contribution is unknown. We tested a specific hypothesis based on the spatial firing properties of neurons in the hippocampal formation of rats, that this region supports the construction of spatially coherent mental images by representing the locations of the environmental boundaries surrounding our viewpoint. Using functional magnetic resonance imaging, we show that hippocampal activation increases parametrically with the number of enclosing boundaries in the imagined scene. In contrast, hippocampal activity is not modulated by a nonspatial manipulation of scene complexity nor to increasing difficulty of imagining the scenes in general. Our findings identify a specific computational role for the hippocampus in mental imagery and episodic recollection

    INTEGRAL high energy behaviour of 4U 1812-12

    Full text link
    The low mass X-ray binary system 4U 1812-12 was monitored with the INTEGRAL observatory in the period 2003-2004 and with BeppoSAX on April 20, 2000. We report here on the spectral and temporal analysis of both persistent and burst emission. The full data set confirms the persistent nature of this burster, and reveals the presence of emission up to 200 keV. The persistent spectrum is well described by a comptonization (CompTT) model plus a soft blackbody component. The source was observed in a hard spectral state with a 1-200 keV luminosity of 2*10^(36) ergs/s and L/LEdd~1% and no meaningful flux variation has been revealed, as also confirmed by a 2004 RXTE observation. We have also detected 4 bursts showing double peaked profiles and blackbody spectra with temperatures ranging from 1.9 to 3.1 keV.Comment: 6 pages, 4 figures. Accepted for publication by A&

    A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina.

    Get PDF
    Our understanding of the relevance of peripheral retinal abnormalities to disease in general and in age-related macular degeneration (AMD) in particular is limited by the lack of detailed peripheral imaging studies. The purpose of this study was to develop image grading protocols suited to ultra-widefield imaging (UWFI) in an aged population
    corecore