
http://wrap.warwick.ac.uk/

Original citation:
Bird, R. F., Pennycook, S. J., Wright, S. A. and Jarvis, S. A. (2013) Towards a portable
and future-proof particle-in-cell plasma physics code. In: 1st International Workshop on
OpenCL (IWOCL 13), Atlanta, USA, 13 - 14 May 2013

Permanent WRAP url:
http://wrap.warwick.ac.uk/58833

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented in WRAP is the published version or, version of record, and may
be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/19553366?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/58833
mailto:publications@warwick.ac.uk

Towards a Portable and Future-proof Particle-in-Cell
Plasma Physics Code

R. F. Bird, S. J. Pennycook, S. A. Wright, S. A. Jarvis
Performance Computing and Visualisation

Department of Computer Science
University of Warwick

rfb@dcs.warwick.ac.uk

ABSTRACT
We present the first reported OpenCL implementation of
EPOCH3D, an extensible particle-in-cell plasma physics code
developed at the University of Warwick. We document the
challenges and successes of this porting effort, and compare
the performance of our implementation executing on a wide
variety of hardware from multiple vendors. The focus of our
work is on understanding the suitability of existing algo-
rithms for future accelerator-based architectures, and iden-
tifying the changes necessary to achieve performance porta-
bility for particle-in-cell plasma physics codes.

We achieve good levels of performance with limited changes
to the algorithmic behaviour of the code. However, our re-
sults suggest that a fundamental change to EPOCH3D’s
current accumulation step (and its dependency on atomic
operations) is necessary in order to fully utilise the massive
levels of parallelism supported by emerging parallel archi-
tectures.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming—Parallel Pro-
gramming

General Terms
Experimentation, Performance

Keywords
OpenCL, Particle-in-Cell, Performance Portability, Optimi-
sation

1. INTRODUCTION
The plasma physics applications required by many high-
performance computing (HPC) centres are expensive to pro-
duce, due to the highly complex nature of the mathematics
involved and the desired ability to support a wide range

of simulations within a single software package. Develop-
ing such an application (a process which can be spread over
many years, or even decades) also represents a significant
investment, often including the creation of novel algorithms
that must be rigorously tested by domain experts and com-
puter scientists before the application can be deployed into
a production environment. It is therefore important to such
centres that codes remain usable for as long as possible, to
maximise the return on their investment.

Many such codes (including the one featured in this study)
were written to target traditional HPC clusters comprised
of a large number of high-clocked serial cores connected via
some networking interface. As such they have been engi-
neered to ensure efficient inter-node message passing pat-
terns and scaling behaviours. but are not likely to be well-
prepared for the many forms of on-node parallelism that
typify the most recent and future architecture designs [6]. It
is therefore crucial that codes are revisited to ensure both:
1) portability between the different architectures available
today; and 2) continued scalability on the architectures of
tomorrow.

Since it is not feasible to rewrite an entire production code
from scratch for each new technology, it is important to
understand how to introduce the desired portability and
future-proofing in an incremental manner, and to do so with-
out becoming tied to a proprietary language or programming
interface. To this end, we present a case-study detailing
the porting of a production plasma physics code to accel-
erator architectures using the Open Computing Language
(OpenCL) [10], one of many available open standards for
targeting accelerators [16, 17, 18].

In this paper we aim to develop an understanding of tech-
niques that allow legacy Fortran codes (that are typically
serial in nature), and in particular particle-in-cell (PIC)
plasma physics applications, to benefit from the increasing
amounts of on-node parallelism present in emerging HPC
architectures. We explore the utility of OpenCL for future-
proofing a production application, and the extent to which
accelerator hardware can lead to application speed-ups in
the PIC domain. The eventual goal of this work is to feed
any identified code optimisations back into the original code
base; such improvements may have been overlooked for sev-
eral years, and may therefore be responsible for many wasted
compute cycles on large HPC systems.

The specific contributions of this work are:

• We present the first documented port of EPOCH3D to
accelerator architectures. Due to the size and complex-
ity of its code base, making the OpenCL implementa-
tion of EPOCH3D fully resident on the accelerator (i.e.
running all computation on the device, to minimise the
frequency of data transfers across the PCIe bus) is an
ambitious undertaking and beyond the scope of this
work; we focus instead on the porting of only its most
expensive subroutine (push_particles). EPOCH3D
is widely used by both the academic community and
by industry, and we believe that many of the issues
we experience are representative of those one would
expect to encounter in any legacy Fortran application.

• We explore optimisation opportunities within the
OpenCL code, with an aim to improve the perfor-
mance of EPOCH3D running on accelerated systems.
Specifically, we examine the utility of: 1) SIMD/SIMT
execution on CPUs/GPUs; 2) loop and kernel fission;
and 3) grouping the computation of particles within a
given cell. We demonstrate the existence of a trade-off
between optimising the field calculation and current
accumulation steps of EPOCH3D, and highlight the
difficulty of mapping EPOCH3D’s current accumula-
tion step to accelerator architectures.

• Finally, we present a detailed benchmarking compari-
son of our OpenCL port executing on a wide variety of
different hardware and architecture types. In addition
to reporting performance for a number of accelerator
architectures – three generations of NVIDIA hardware
(Tesla, Fermi and Kepler) – we also compare the per-
formance of the original Fortran code to the OpenCL
implementation running on traditional CPU architec-
tures. Our results suggest that a fundamental change
to EPOCH3D’s current accumulation step will be nec-
essary in order to fully utilise emerging parallel archi-
tectures.

The remainder of this paper is organised as follows: Sec-
tion 2 provides a survey of related work; Section 3 pro-
vides background information about PIC applications and
the specific algorithms used in EPOCH3D; Section 4 de-
tails the development of our OpenCL implementation of
EPOCH3D; Section 5 presents a comparative benchmarking
study, examining the performance of both individual kernels
and the application as a whole; and finally Section 6 con-
cludes this paper.

2. RELATED WORK
The use of emerging parallel architectures for the accelera-
tion of scientific codes is well documented, with many re-
searchers reporting speed-ups of up to an order of mag-
nitude following optimisation [2, 15, 22, 25]. Others have
highlighted the importance of ensuring fair comparisons be-
tween different hardware types [3, 4, 13, 24]; to avoid ar-
tificially inflating any claims about the performance of our
accelerator-based solutions we include all known overheads
(such as PCIe transfers) and acknowledge it is important to

consider the impact of kernel-level speed-ups in the context
of overall application time.

The utility of GPU architectures in the PIC domain has
been explored in previous work. In [9], the authors dis-
cuss the importance of carefully partitioning the grid space,
suggesting that an efficient GPU PIC solution requires fine
tuning and extended programmer effort. They also discuss
the importance of efficient use of shared memory on GPUs
– this feature is not available on x86-based platforms (e.g.
CPUs and Intel Xeon Phi coprocessors), and may therefore
negatively impact the ability to offer portable performance.
In [23] the authors discuss a range of algorithms to perform
grid interpolation, and discuss a range of potential issues
including shared memory and thread contention; and in [5],
PIC solutions have been shown to scale across multiple ac-
celerators while maintaining numerical stability.

The extensible nature of EPOCH3D constrains the set of
allowable algorithmic implementations, limiting the extent
to which we are able to change the core algorithm, a con-
sideration not held by other PIC applications. An example
of this is that EPOCH3D’s algorithm is required to ensure
that the electric fields satisfy Poisson’s equation, a condi-
tion that many non-relativistic codes do not have to meet.
In this paper, we seek to determine whether these algorithms
can benefit from the levels of parallelism present in acceler-
ator architectures, or whether it will be necessary to adopt
a fundamentally different approach.

Open standards (e.g. OpenMP [17], OpenCL [10] and Ope-
nACC [16]) provide application developers a greater level of
portability than third-party libraries and languages, since
they are supported by multiple compilers and on multiple
architectures. Such standards potentially also provide some
level of future-proofing, with each updated specification in-
troducing new constructs required to exploit recent archi-
tectural changes (e.g. OpenMP is adding support for the
vectorisation of loops [11] and offloading computation to ac-
celerators [18]). However, a common criticism of these stan-
dards is that although they guarantee functional portability,
they make no guarantees of performance portability (i.e. the
ability of a single source code to achieve good levels of per-
formance on a wide variety of hardware). The development
of performance-portable OpenCL codes has been the sub-
ject of previous work [7, 12]; we build upon our own prior
research, in which we utilised OpenCL for the acceleration
of wavefront [19] and molecular dynamics [20] codes.

3. BACKGROUND
EPOCH3D [1] is a production code developed at the Uni-
versity of Warwick as part of the Extendable PIC Open
Collaboration project, which aims to write and maintain a
UK community advanced relativistic electromagnetism PIC
code. The core algorithm of EPOCH3D is based upon the
particle push and field update algorithms developed by Hart-
mut Ruhl [21], extended to include advanced features such as
collisions, ionisation and quantum electrodynamics (QED)
driven coherent radiation. EPOCH3D tracks the electric
and magnetic fields generated by the motion of pseudo-
particles as they move across a grid, and is therefore ca-
pable of reproducing the full range of classical microscale
behaviour of a collection of charged particles.

for all species do
for all particles do

� Move particles.
position ← position + momentum

� Update momentum based on field effects.
e_cell ← bpositionc
for all neighbours of e_cell do

calculate electric field effects
end for

b_cell ← bposition + 0.5c
for all neighbours of b_cell do

calculate magnetic field effects
end for

momentum ← momentum +
electric and magnetic field effects

� Calculate and deposit currents.
for all neighbour cells do

calculate current
deposit current

end for

end for
end for

Figure 1: Pseudo-code for push_particles.

The core of EPOCH3D’s PIC algorithm (the push_particles
subroutine, given as pseudo-code in Figure 1) is the single
biggest contributor to its execution time (> 70%). It con-
sists of three distinct steps, which are applied to every par-
ticle in turn:

1. Move the particle in space (according to its momen-
tum), potentially crossing into one of many neighbour-
ing cells.

2. Update the particle’s momentum based upon the elec-
tric and magnetic fields.

3. Deposit current onto the grid due to the motion of the
charged particle.

This algorithm features a large amount of inherent paral-
lelism: the calculations for the position and momentum of
each particle are independent, and the electric and magnetic
fields remain constant between loop iterations. However,
the current accumulation step contains a write-conflict; any
number of particles (which are close in space) may attempt
to update the charge for the same grid point. This conflict
prevents the loop from being parallelised in a naïve fash-
ion (e.g. via the insertion of pragmas, or source-to-source
translation), and necessitates some form of global synchro-
nisation between work-items, in order to ensure that no two
work-items can update the same cell simultaneously.

When EPOCH3D (and many similar codes) were originally
developed, such factors did not need consideration – during
single threaded scalar execution, the grid updates of multi-
ple particles cannot conflict with one another. As hardware
designs have become increasingly focused on parallel execu-
tion, inherently serial algorithms such as this will become
more of a performance bottleneck. Indeed, the issues we

encounter with EPOCH3D’s current accumulation step are
not specific to OpenCL, or to accelerators: the write-conflict
complicates the use of parallelism on CPU and GPU archi-
tectures alike.

4. OPENCL IMPLEMENTATION
In the original EPOCH3D code base, and as shown in Fig-
ure 1, the push_particles subroutine consists of a deep loop
nest spanning around 700 lines of code. This is reasonably
typical of large legacy codes that have been optimised for se-
rial execution, exhibiting several properties that map well to
traditional CPU architectures – in EPOCH3D’s case, parti-
cle data are stored in a linked list of structs, and read/writ-
ten only once in the entire loop, in order to improve cache
performance. Such optimisations may actually be detrimen-
tal to performance on modern, parallel architectures: large
kernels typically require many registers, and may cause reg-
ister spilling; grouping dependent and independent opera-
tions in a single loop may completely prevent parallelisation
(as explained in Section 3); and struct-of-arrays (SoA) data
layouts are better suited to SIMD execution.

To address these concerns, we fission our OpenCL kernel
into three parts, corresponding to the three operations dis-
cussed previously: 1) moving the particles; 2) updating par-
ticle momenta; and 3) updating the current. The overhead
of kernel fission in this case is relatively low, requiring only
a small number of values to be recalculated between kernels,
and allows us to apply different optimisations to the three
different kernels (which we will show to be important). It
also separates the update conflict from the vast majority of
the compute, and the same fissioning process could there-
fore enable the use of auto-vectorisation/OpenMP on CPUs
– we intend to explore this in future work.

4.1 Particle Move
After fission, the particle move step is simple to represent
in OpenCL. We assign a single particle to each OpenCL
work-item, and allow the OpenCL runtime to decide upon
the best work-group size for a given device. Since we make
no use of shared memory, or other architecture-specific fea-
tures, we expect this kernel to exhibit portable performance
across hardware types. The kernel is memory bound – it
simply reads in particle positions and momenta, performs a
small number of floating-point operations, and then writes
out the new positions – and we would therefore expect its
performance to scale with memory bandwidth.

The only optimisations employed in this kernel concern the
original particle data layout used by EPOCH3D. Whereas
the original Fortran code uses a linked list of particle structs,
we store particle data in an SoA layout and thereby ensure
that memory accesses to particle data are coalesced.

4.2 Field Calculation
The second step of the particle push, in which particle mo-
menta are updated based on the surrounding electric and
magnetic fields, is also data-parallel following fission. How-
ever, unlike the particle move step, there are many optimi-
sation opportunities. Each particle must read field informa-
tion from the 27 cells surrounding its own (i.e. a 27-point
stencil), and the optimisation of such kernels for GPU ar-
chitectures is well-studied [14].

Bx

Ey

Ex

Ez

Bz

By

Figure 2: An example of a Yee staggered grid.

In the original Fortran implementation of EPOCH3D, par-
ticles are not stored in any particular order. Therefore,
these stencil operations additionally become gather oper-
ations (i.e. uncoalesced loads); a collection of W particles
(assigned to W work-items), may lie in W different cells and
access 27W memory locations.

In order to improve this memory access pattern, we exploit
domain-specific knowledge to reorder the particles before
computing their momenta. Specifically, particles are sorted
using a simple binning kernel, based upon a combination of
their position and half-cell shifted position (to account for
the Yee staggered grid demonstrated in Figure 2).

Although sorting in this way increases the probability that
W particles will read from the same cells, it does not guar-
antee it; this prevents us from exploring other optimisations
(such as using shared memory to cache cell data). In order
to address this issue, we consider three alternative levels of
parallelism: 1) assigning one work-item per particle (the de-
fault); 2) assigning one work-group per cell; and 3) assigning
one work-group to some set of cells (henceforth referred to
as a “super-cell”).

Each of these three levels of parallelism maps intuitively to
different distributions of particles: 1) a very sparse distri-
bution, with a small number of particles per cell; 2) a very
dense distribution, with many particles per cell; and 3) a
distribution somewhere in between, where the size of the
super-cell is set so as to contain a specific number of par-
ticles. In cases 2) and 3), shared memory can be used to
reduce the number of accesses to global memory.

4.3 Current Accumulation
In order to overcome the write-conflict present in the current
accumulation step of the particle push, we must introduce
some form of global synchronisation between work-items to
ensure that no two work-items can update the same memory
location simultaneously.

There are a number of well-known approaches for this kind
of mutual exclusion: critical sections; cell-wise (or super-
cell-wise) locking; and atomic operations. However, imple-
menting any of these approaches in a portable manner is
challenging: different hardware has different levels of sup-
port for atomics (e.g. 32-bit, but not 64-bit, integers); and
all three depend on extensive use of OpenCL’s atom_cmpxchg
routine, careless use of which can lead to deadlocks on some
hardware (e.g. NVIDIA GPUs, where work-items are sched-
uled for execution in lock-step).

CPUs GPUs
X5550 E5-2670 C1060 C2050 K20

Manufacturer Intel Intel NVIDIA NVIDIA NVIDIA
Compute Units 4 8 30 14 14
Proc. Elements 4 8 240 448 2496

Peaka GFLOP/s 85.12 332.8 933 1288 3520
Bandwidth (GB/s) 32 51.2 102 144 208

Power (Watts) 95 115 189 238 225
Compiler and Flags Intel 13, -O3

MPI Library IMPI 4.1.0.030
OpenCL SDKs AMD APP 2.8 CUDA Toolkit 5.0

aPeak performance for single precision.

Table 1: Hardware and software configuration.

A further complication influencing the performance of atomic
locks is data access pattern. If two work-items attempt to
update the same cell simultaneously, then one must wait
until the other has finished – performance can therefore be
increased by maximising the temporal distance between two
accesses to the same memory location, in order to avoid
contention between work-items. The end result is a perfor-
mance trade-off between the field calculation and current
accumulation kernels: the best case for one is the worst for
the other. This is discussed further (alongside full perfor-
mance results for the different approaches) in Section 5.

As an alternative to the current implementation, it is possi-
ble to replace EPOCH3D’s current accumulation step with
one more suitable for accelerator architectures. For example,
one approach referred to as “classic PIC” does not accumu-
late current densities at all, instead calculating the current
density in a later step by summing over particles. However,
this leads to the electric fields no longer satisfying Poisson’s
equation, and requires a corrector step which distorts the
electromagnetic wave dispersion relation – this scheme is
unsuitable for relativistic problems. We are currently work-
ing with physicists at the University of Warwick to develop a
new scheme, which is data-parallel and exhibits the desired
physical characteristics, and hope to report on its perfor-
mance in future work.

5. RESULTS
5.1 Experimental Setup
The hardware and software configuration for all experiments
is given in Table 1. The reader’s attention is drawn to the
presence of two CPUs: we use the X5550 (which is based
on the Nehalem microarchitecture) to compare the perfor-
mance of the original Fortran code to that of our OpenCL
implementation; and we use two E5-2670 sockets (based
on the newer Sandy Bridge microarchitecture) as the base-
line for comparisons between CPU and GPU architectures.
The OpenCL runtime was not available to us on the Sandy
Bridge system.

For the following experiments, we use EPOCH3D to simu-
late the interaction of two densely packed electron streams,
with runtime options typical of normal conditions: each par-
ticle is assumed to have an individual mass; we use the (de-
fault) triangular pseudo-particle shape function; and we run
a modest problem size of 25 million particles (128 particles
per cell, for a 583 cell problem), with periodic boundary con-
ditions. The CPU code was setup to issue manual prefetches

Approach X5550 C1060 C2050 K20
Crit. Section 0.003 – 0.260 0.855
Lock (Face) 0.001 6.118 0.054 0.088
Lock (Row) 0.001 0.396 0.016 0.011
Lock (Cell) 0.002 0.041 0.011 0.003
Atomic Add 0.002 0.026 0.008 0.002

Table 2: Comparison of execution times (in seconds) for
different mutual exclusion approaches.

between loop iterations (on account of particles being stored
in a linked list), and we employ loop fission to facilitate a
more accurate comparison between the three different kernel
components. This fissioned version of the loop is ≈5–10%
slower than the original Fortran code, due to the introduc-
tion of additional memory accesses.

5.2 Effects and Portability of Optimisations
5.2.1 Mutual Exclusion
Table 2 compares the performance of three alternative mu-
tual exclusion approaches (critical sections, locking, and ato-
mic adds), used to prevent write-conflicts within the current
accumulation kernel. We report execution times for multiple
granularities of locking: locking a face (i.e. using one lock
per z co-ordinate); locking a row (i.e. using one lock per
pair of y and z co-ordinates); and locking individual cells.
All locks make use of a 32-bit atomic_cmpxchg operation.

There are several interesting trends in the data. On the
CPU, we see that although using locks or atomic adds is
faster than using a critical section, the locking granularity
has little effect on kernel performance. This is due to the
low number of work-items (relative to GPU hardware) that
are able to contend for any given lock. On the GPUs, perfor-
mance improves as the mutual exclusion becomes finer, with
atomic adds providing the best runtime in all cases; this is a
somewhat surprising result, since we had expected the over-
head of acquiring locks (via atomic operations) to be more
expensive than the writes to memory. Also of interest is
that NVIDIA’s newest Kepler architecture is out-performed
by the older Fermi architecture in the presence of coarse
locks – this is likely to be a reflection of the greater lev-
els of parallelism present in Kepler, and the increased lock
contention this may cause.

To investigate the overhead of atomic adds on different archi-
tectures, we repeat our experiments using normal writes (al-
lowing the kernel to write to conflicting memory addresses,
and achieve the wrong answer). Although we appreciate
that this baseline is unrealistic, we use it here merely to
represent a “best case” for writing to global memory. Our
results (Figure 3) show that the overhead of atomics is in-
consistent across different hardware: 2× on the CPU; 14×
on the Tesla; 16× on the Fermi; and 2× on the Kepler. That
the performance of atomics have been so greatly improved
in the Kepler architecture is promising, but a 2× overhead
is still undesirable for such an expensive kernel.

Since atomic adds provide the best performance on the ar-
chitectures considered here, we use this version of the cur-
rent accumulation kernel in all of the experiments that fol-
low. However, we stress that this kernel is not performance

X5550 C1060 C2050 K20
0

10

20

30

40

50

60

R
un

tim
e
(s
)

Atomics No Atomics

Figure 3: Overhead introduced by atomic operations.

portable since, as noted previously, some OpenCL runtime
platforms do not feature support for 64-bit atomics. This is
an issue in software, rather than hardware – at the time of
writing, it is not possible to run our kernel on the X5550 pro-
cessor using Intel’s runtime, but it is possible using AMD’s.
Combined with the varying overhead of atomics on different
architectures (and the inherent serialisation that will arise
as parallelism, and hence lock contention, increases) there
is clear motivation for further investigation of alternative
algorithms in future work.

5.2.2 Particle Ordering
The graphs in Figure 4 present runtimes for (a) the field
calculation kernel; and (b) the current accumulation kernel,
using atomic adds. We compare three different particle or-
derings: the default ordering used by EPOCH3D (Default);
an ordering based on the particle’s cell ID (Sorted); and a
pseudo-random ordering (Random).

As discussed in Section 4, such orderings are expected to
have a significant impact on the performance of both ker-
nels, and this is reflected in the GPU results. On the CPU,
however, we see very little effect. This is because our ker-
nels do not make use of vector instructions, and thus the
stencil operation is not a gather on this platform – the
biggest bottleneck for the scalar implementation is cache
performance. The size of the electric and magnetic field
data is small (12 MB) in comparison to the size of the par-
ticle data (1.5 GB), but accessed more frequently, and we
therefore see good cache behaviour regardless of particle or-
dering. Also of note is that the impact of particle ordering
decreases with each generation of the CUDA architecture –
we attribute this to the introduction (and improvement) of
hardware caches.

Since current accumulation is so much more expensive than
field accumulation, we use the random particle ordering hen-
ceforth – taking a 2× hit on the latter has a smaller effect
on overall runtime than a 4× hit on the former.

5.3 Hardware Comparison
The graph in Figure 5 compares the runtime of the final
kernel configuration (atomic adds, with a random particle
ordering) on each platform. In addition to the performance

X5550 C1060 C2050 K20
0

0.5

1

1.5

2

2.5

3
Sl
ow

do
w
n
(×

)

Default Sorted Random

(a) Field calculation kernel.

X5550 C1060 C2050 K20
0

1

2

3

4

5

6

Sl
ow

do
w
n
(×

)

Default Sorted Random

(b) Current accumulation kernel.

Figure 4: Impact of sorting schemes on kernel runtimes.

X5550
(F90)

X5550
(OpenCL)

E5-2670
(F90)

C1060 C2050 K20
0

10

20

30

40

50

60

R
un

tim
e
(s
)

Current Accumulation Field Calculation
Particle Move Overhead

Figure 5: Best kernel performance across platforms.

of each individual kernel, we also list any overheads (e.g.
PCIe data transfers), to facilitate a fairer comparison be-
tween architectures.

The performance of our OpenCL code on the X5550 almost
matches that of the native Fortran code. The difference
in performance is caused not by the current accumulation
kernel (as might be expected) but by the field calculation
kernel. We believe this to be due to the change in data
layout (from AoS to SoA), which spreads the data for a
given particle over several cache lines.

That the performance difference is so low is a positive re-
sult for the maintainers of EPOCH3D, suggesting OpenCL
will provide a good route to explore accelerator performance
without a significant negative impact on CPUs.

What is most clear from our results is that the current accu-
mulation kernel is an issue, dominating the runtimes of all
implementations on all hardware. The other kernels perform
well, and in line with our expectations. However, overhead
is much larger than running the kernels themselves – hiding
PCIe communication costs via pipelining, or making more

kernels resident on the device, will clearly be a critical direc-
tion for future work following the acceleration of the current
accumulation step.

Something we do not consider here is how the performance of
EPOCH3D on different hardware changes with the number
of particles per cell. This impacts simulation accuracy, and
current simulations are bounded by performance – running
more particles per cell is desirable, but too expensive. It may
be that GPU implementations only begin to offer greater
performance for these larger, more complicated, simulations;
we leave this investigation to future work.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we report on the development of an OpenCL
implementation of EPOCH3D, a production PIC code de-
veloped by the University of Warwick. The PIC algorithm is
highly parallel, and should map well to accelerator architec-
tures. However, as shown in this study, there are two issues
that first need to be addressed in EPOCH3D: the highly
serial nature of its legacy Fortran implementation; and the
presence of write-conflicts in its current accumulation step.

Despite the promising initial results demonstrated in this
work, our findings confirm that the current accumulation
step (and in particular, its use of atomics) is our biggest
barrier to both performance and portability – suggesting
that a fundamental change to the algorithm is necessary to
fully utilise the massive levels of parallelism supported by
emerging parallel architectures.

In future work, we intend to continue our porting effort, and
apply the knowledge we have gained during this process as
part of ongoing efforts to optimise EPOCH3D for x86-based
hardware (including Intel Xeon Phi coprocessors). Addi-
tionally, we are developing a mini-app [8] representation of
EPOCH3D, in order to facilitate and accelerate the investi-
gation of alternative hardware and software options for PIC
codes.

Acknowledgements
This research is supported in part by the EPSRC grant “A
Radiation Hydrodynamic ALE Code for Laser Fusion En-
ergy” (EP/I029117/1) and by The Royal Society through
their Industry Fellowship Scheme (IF090020/AM).

7. REFERENCES
[1] T. Arber et al. EPOCH: Extendable PIC Open

Collaboration.
http://ccpforge.cse.rl.ac.uk/gf/project/epoch/,
October 2011.

[2] N. Arora, A. Shringarpure, and R. W. Vuduc. Direct
N-body Kernels for Multicore Platforms. In
Proceedings of the International Conference on
Parallel Processing, ICPP ’09, pages 379–387, Vienna,
Austria, September 2009. IEEE Computer Society.

[3] R. Bordawekar, U. Bondhugula, and R. Rao. Believe
it or Not! Multi-core CPUs Can Match GPU
Performance for FLOP-intensive Application!
Technical Report RC24982, IBM Research Division,
Thomas J. Watson Research Center, Yorktown
Heights, NY, 2010.

[4] R. Bordawekar, U. Bondhugula, and R. Rao. Can
CPUs Match GPUs on Performance with
Productivity?: Experiences with Optimizing a
FLOP-intensive Application on CPUs and GPU.
Technical Report RC25033, IBM Research Division,
Thomas J. Watson Research Center, Yorktown
Heights, NY, 2010.

[5] H. Burau et al. PIConGPU: A Fully Relativistic
Particle-in-Cell Code for a GPU Cluster. IEEE
Transactions on Plasma Science, 38(10):2831–2839,
2010.

[6] J. Dongarra et al. The International Exascale Software
Project Roadmap. International Journal of High
Performance Computing Applications, 25(1):3–60,
2011.

[7] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson,
and J. Dongarra. From CUDA to OpenCL: Towards a
Performance-Portable Solution for Multi-platform
GPU Programming. Technical Report UT-CS-10-656,
Knoxville, TN, 2010.

[8] M. A. Heroux et al. Improving Performance via
Mini-applications. Technical Report SAND2009-5574,
Sandia National Laboratories, Albuquerque, NM,
2009.

[9] R. G. Joseph, G. Ravunnikutty, S. Ranka,
E. D’Azevedo, and S. Klasky. Efficient GPU
Implementation for Particle in Cell Algorithm. In
Proceedings of the IEEE International Parallel
Distributed Processing Symposium, IPDPS’11, pages
395–406, 2011.

[10] Khronos OpenCL Working Group. OpenCL 1.2
Specification. http://www.khronos.org/registry/
cl/specs/opencl-1.2.pdf.

[11] M. Klemm et al. Extending OpenMP* with Vector
Constructs for Modern Multicore SIMD Architectures.
In Proceedings of the International Workshop on
OpenMP, IWOMP ’12, pages 59–72, Rome, Italy,
2012. Springer-Verlag.

[12] K. Komatsu et al. Evaluating Performance and
Portability of OpenCL Programs. In Proceedings of

the International Workshop on Automatic
Performance Tuning, iWAPT ’11, Berkeley, CA, June
2010. Springer.

[13] V. W. Lee et al. Debunking the 100X GPU vs. CPU
Myth: An Evaluation of Throughput Computing on
CPU and GPU. In Proceedings of the ACM/IEEE
International Symposium on Computer Architecture,
pages 451–460, 2010.

[14] P. Micikevicius. 3D Finite Difference Computation on
GPUs using CUDA. In Proceedings of the 2nd
Workshop on General Purpose Processing on Graphics
Processing Units, GPGPU-2, pages 79–84, New York,
NY, USA, 2009. ACM.

[15] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and
P. Dubey. 3.5-D Blocking Optimization for Stencil
Computations on Modern CPUs and GPUs. In
Proceedings of the ACM/IEEE International
Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’10, pages 1–13,
New Orleans, LA, November 2010. IEEE Computer
Society.

[16] OpenACC Corporation. OpenACC 1.0 Specification.
http://www.openacc.org/sites/default/files/
OpenACC.1.0_0.pdf, November 2011.

[17] OpenMP Architecture Review Board. OpenMP 4.0
Specification. http://www.openmp.org/
mp-documents/OpenMP4.0RC1_final.pdf, November
2012.

[18] OpenMP Architecture Review Board. Technical
Report on Directives for Attached Accelerators.
Technical Report TR1, November 2012.

[19] S. J. Pennycook et al. An Investigation of the
Performance Portability of OpenCL. Journal of
Parallel and Distributed Computing, (to appear), 2012.

[20] S. J. Pennycook and S. A. Jarvis. Developing
Performance-Portable Molecular Dynamics Kernels in
OpenCL. In Proceedings of the International
Workshop on Performance Modeling, Benchmark and
Simulation of HPC Systems, PMBS ’12, Salt Lake
City, UT, November 2012.

[21] Ruhl, H. Classical Particle Simulations with the PSC
Code. http://www.physik.uni-muenchen.de/lehre/
vorlesungen/wise_09_10/tvi_mas_compphys/
vorlesung/Lecturescript.pdf.

[22] M. Smelyanskiy et al. Mapping High-Fidelity Volume
Rendering for Medical Imaging to CPU, GPU and
Many-Core Architectures. IEEE Transactions on
Visualization and Computer Graphics,
15(6):1563–1570, November 2009.

[23] G. Stantchev, W. Dorland, and N. Gumerov. Fast
Parallel Particle-To-Grid Interpolation for Plasma
PIC Simulations on the GPU. Journal of Parallel and
Distributed Computing, 68(10):1339 – 1349, 2008.

[24] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. E.
Guney, and A. Shringarpure. On the Limits of GPU
Acceleration. In Proceedings of the USENIX Workshop
on Hot Topics in Parallelism, 2010.

[25] S. Williams, J. Carter, L. Oliker, J. Shalf, and
K. Yelick. Optimization of a Lattice Boltzmann
Computation on State-of-the-Art Multicore Platforms.
Journal of Parallel and Distributed Computing,
69(9):762–777, September 2009.

