2,397 research outputs found

    Collisional modelling of the debris disc around HIP 17439

    Full text link
    We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a first model, Ertel et al. (2014) assumed the size and radial distribution of the circumstellar dust to be independent power laws. There, by exploring a very broad range of possible model parameters several scenarios capable of explaining the observations were suggested. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios trying to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, i.e. the actual physical processes operating in debris discs. We find that all scenarios discussed in Ertel et al. are physically sensible and can reproduce the observed SED along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. A good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not supported, although not ruled out, by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of discriminating between the competing scenarios by future observations are discussed.Comment: Astronomy and Astrophysics (accepted for publication). 11 pages, 8 figure

    RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer

    Get PDF
    Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNB

    Collisional modelling of the AU Microscopii debris disc

    Full text link
    The spatially resolved AU Mic debris disc is among the most famous and best-studied debris discs. We aim at a comprehensive understanding of the dust production and the dynamics of the disc objects with in depth collisional modelling including stellar radiative and corpuscular forces. Our models are compared to a suite of observational data for thermal and scattered light emission, ranging from the ALMA radial surface brightness profile at 1.3mm to polarisation measurements in the visible. Most of the data can be reproduced with a planetesimal belt having an outer edge at around 40au and subsequent inward transport of dust by stellar winds. A low dynamical excitation of the planetesimals with eccentricities up to 0.03 is preferred. The radial width of the planetesimal belt cannot be constrained tightly. Belts that are 5au and 17au wide, as well as a broad 44au-wide belt are consistent with observations. All models show surface density profiles increasing with distance from the star as inferred from observations. The best model is achieved by assuming a stellar mass loss rate that exceeds the solar one by a factor of 50. While the SED and the shape of the ALMA profile are well reproduced, the models deviate from the scattered light data more strongly. The observations show a bluer disc colour and a lower degree of polarisation for projected distances <40au than predicted by the models. The problem may be mitigated by irregularly-shaped dust grains which have scattering properties different from the Mie spheres used. From tests with a handful of selected dust materials, we derive a preference for mixtures of silicate, carbon, and ice of moderate porosity. We address the origin of the unresolved central excess emission detected by ALMA and show that it cannot stem from an additional inner belt alone. Instead, it should derive, at least partly, from the chromosphere of the central star.Comment: Astronomy and Astrophysics (accepted for publication), 18 pages, 11 figure

    Multi-wavelength modeling of the spatially resolved debris disk of HD 107146

    Get PDF
    (abridged) We aim to constrain the location, composition, and dynamical state of planetesimal populations and dust around the young, sun-like (G2V) star HD 107146}. We consider coronagraphic observations obtained with the Advanced Camera for Surveys (HST/ACS) onboard the HST in broad V and broad I filters, a resolved 1.3mm map obtained with the Combined Array for Research in Millimeter-Wave Astronomy (CARMA), Spitzer/IRS low resolution spectra, and the spectral energy distribution (SED) of the object at wavelengths ranging from 3.5micron to 3.1mm. We complement these data with new coronagraphic high resolution observations of the debris disk using the Near Infrared Camera and Multi-Object Spectrometer (HST/NICMOS) aboard the HST in the F110W filter. The SED and images of the disk in scattered light as well as in thermal reemission are combined in our modeling using a parameterized model for the disk density distribution and optical properties of the dust. A detailed analytical model of the debris disk around HD 107146 is presented that allows us to reproduce the almost entire set of spatially resolved and unresolved multi-wavelength observations. Considering the variety of complementary observational data, we are able to break the degeneracies produced by modeling SED data alone. We find the disk to be an extended ring with a peak surface density at 131AU. Furthermore, we find evidence for an additional, inner disk probably composed of small grains released at the inner edge of the outer disk and moving inwards due to Poynting-Robertson drag. A birth ring scenario (i.e., a more or less broad ring of planetesimals creating the dust disk trough collisions) is found to be the most likely explanation of the ringlike shape of the disk.Comment: 15 pages, 9 figures, accepted for publication in A&

    Generation of correlated Rayleigh fading channels for accurate simulationof promising wireless communication systems

    Get PDF
    In this paper, a generalized method is proposed for the accurate simulation of equal/ unequal power correlated Rayleigh fading channels to overcome the shortcomings of existing methods. Spatial and spectral correlations are also considered in this technique for different transmission conditions. It employs successive coloring for the inphase and quadrature components of successive signals using real correlation vector of successive signal envelopes rather than complex covariance matrix of the Gaussian signals which is utilized in conventional methods. Any number of fading signals with any desired correlations of successive envelope pairs in the interval [0, 1] can be generated with high accuracy. Moreover, factorization of the desired covariance matrix is avoided to overcome the shortcomings and high computational complexity of conventional methods. Extensive simulations of different representative scenarios demonstrate the effectiveness of the proposedtechnique. The simplicity and accuracy of this method will help the researchers to study and simulate the impact of fading correlation on the performance evaluation of various multi-antenna and multicarrier communication systems. Moreover, it enables the engineers for efficient design and deployment of new schemes for feasible wireless application

    J004457+4123 (Sharov 21): not a remarkable nova in M31 but a background quasar with a spectacular UV flare

    Full text link
    We announce the discovery of a quasar behind the disk of M31, which was previously classified as a remarkable nova in our neighbour galaxy. The paper is primarily aimed at the outburst of J004457+4123 (Sharov 21), with the first part focussed on the optical spectroscopy and the improvement in the photometric database. Both the optical spectrum and the broad band spectral energy distribution of Sharov 21 are shown to be very similar to that of normal, radio-quiet type 1 quasars. We present photometric data covering more than a century and resulting in a long-term light curve that is densely sampled over the past five decades. The variability of the quasar is characterized by a ground state with typical fluctuation amplitudes of ~0.2 mag around B~20.5, superimposed by a singular flare of ~2 yr duration (observer frame) with the maximum at 1992.81 where the UV flux has increased by a factor of ~20. The total energy in the flare is at least three orders of magnitudes higher than the radiated energy of the most luminous supernovae, provided that it comes from an intrinsic process and the energy is radiated isotropically. The profile of the flare light curve appears to be in agreement with the standard predictions for a stellar tidal disruption event where a ~10 M_sun giant star was shredded in the tidal field of a ~2...5 10^8 M_sun black hole. The short fallback time derived from the light curve requires an ultra-close encounter where the pericentre of the stellar orbit is deep within the tidal disruption radius. Gravitational microlensing provides an alternative explanation, though the probability of such a high amplification event is very low.Comment: Accepted for publication in Astronomy and Astrophysics, 14 pages, 11 figure

    Einfluss der Sakrumfraktur auf das funktionelle Langzeitergebnis von Beckenringverletzungen

    Get PDF
    Zusammenfassung: In der Akutphase umfasst die Behandlung der Beckenringverletzung mit Beteiligung des iliosakralen Komplexes die effiziente Blutungskontrolle und Stabilisierung des Beckenrings. Für das Langzeitresultat sind jedoch neurologische Ausfälle, Fehlverheilungen des hinteren Beckenrings mit tieflumbalen Schmerzen und urologische Komplikationen entscheidend. Zwischen 1991 und 2000 wurden in unserer Klinik 173Patienten mit Sakrumfrakturen behandelt. Diese wurden im Rahmen einer lateralen Kompressionsfraktur (AO-Klassifikation TypB2) oder einer "vertical-shear-" (Typ-C-)Verletzung mit einer Dislokation von 1cm wurden operativ (n=33, 19%) versorgt. 112Patienten wurden nach durchschnittlich 4,9Jahren nachkontrolliert. Von den 39Patienten mit neurologischen Ausfällen (35%) zeigten lediglich 4 eine vollständige neurologische Erholung. Chronische tieflumbale Schmerzen traten selten (n=8, 7%) und nur bei einer Typ-C-Verletzung auf. Die geringe Inzidenz an lumbalen Schmerzen rechtfertigt die konservative Therapie wenig dislozierter (<1cm) Sakrumfrakturen. Entscheidend für das Langzeitergebnis sind neurologische Defizite, die bei 30% aller Patienten persistiere

    First L band detection of hot exozodiacal dust with VLTI/MATISSE

    Get PDF
    For the first time, we observed the emission of hot exozodiacal dust in L band. We used the new instrument MATISSE at the Very Large Telescope Interferometer to detect the hot dust around κ Tuc with a significance of 3σ to 6σ at wavelengths between 3.37 and 3.85μm and a dust-to-star flux ratio of 5 to 7 per cent⁠. We modelled the spectral energy distribution based on the new L band data alone and in combination with H band data published previously. In all cases we find 0.58μm grains of amorphous carbon to fit the κ Tuc observations the best, however, also nanometre or micrometre grains and other carbons or silicates reproduce the observations well. Since the H band data revealed a temporal variability, while our Lband data were taken at a different epoch, we combine them in different ways. Depending on the approach, the best fits are obtained for a narrow dust ring at a stellar distance in the 0.1–029 au range and thus with a temperature between 940 and 1430K⁠. Within the 1σ uncertainty dust location and temperature are confined to 0.032−1.18au and 600−2000K⁠

    Using warm dust to constrain unseen planets

    Get PDF
    Cold outer debris belts orbit a significant fraction of stars, many of which are planet-hosts. Radiative forces from the star lead to dust particles leaving the outer belts and spiralling inwards under Poynting-Robertson drag. We present an empirical model fitted to N-body simulations that allows the fate of these dust particles when they encounter a planet to be rapidly calculated. High mass planets eject most particles, whilst dust passes low mass planets relatively unperturbed. Close-in, high mass planets (hot Jupiters) are best at accreting dust. The model predicts the accretion rate of dust onto planets interior to debris belts, with mass accretions rates of up to hundreds of kilograms per second predicted for hot Jupiters interior to outer debris belts, when collisional evolution is also taken into account. The model can be used to infer the presence and likely masses of as yet undetected planets in systems with outer belts. The non-detection of warm dust with the Large Binocular Telescope Interferometer (LBTI) around Vega could be explained by the presence of a single Saturn mass planet, or a chain of lower mass planets. Similarly, the detection of warm dust in such systems implies the absence of planets above a quantifiable level, which can be lower than similar limits from direct imaging. The level of dust detected with LBTI around beta Leo can be used to rule out the presence of planets more massive than a few Saturn masses outside of ~5au
    corecore