941 research outputs found

    Synthesis of diamondlike carbon films with superlow friction and wear properties

    Full text link
    In this study, the authors introduce a new diamondlike carbon (DLC) film providing a friction coefficient of 0.001 and wear rates of 10{sup {minus}9} to 10{sup {minus}10} mm{sup 3}/N.m in inert-gas environments (e.g., dry nitrogen and argon). The film was grown on steel and sapphire substrates in a plasma enhanced chemical vapor deposition system that uses using a hydrogen-rich plasma. Employing a combination of surface and structure analytical techniques, they explored the structural chemistry of the resultant DLC films and correlated these findings with the friction and wear mechanisms of the films. The results of tribological tests under a 10-N load (creating initial peak Hertz pressures of 1 and 2.2 GPa on steel and sapphire test pairs, respectively) and at 0.2 to 0.5 m/s sliding velocities indicated that a close correlation exists between the friction and wear coefficients of DLC films and the source gas chemistry. Specifically, films grown in source gases with higher hydrogen-to-carbon ratios had the lowest fiction coefficients and the highest wear resistance. The lowest friction coefficient (0.001) was achieved with a film on sapphire substrates produced in a gas discharge plasma consisting of 25% methane and 75% hydrogen

    WTC2005-63980 SUPERLUBRICITY AND NEAR-WEARLESS SLIDING IN CARBON FILMS

    Get PDF
    ABSTRACT Systematic studies on carbon-based materials and coatings in our laboratory over the past 15 years have led to the discovery of an amorphous carbon film that can provide friction coefficients as low as 0.001 and wear rates of less than 10 -10 mm 3 /N.m when tested in inert or vacuum test environments. This paper provides an overview of the recent progress made in the synthesis and characterization of such films and of the importance of near-surface chemistry and chemical interactions on friction and wear. Based on extensive surface analytical and tribological studies, a mechanistic model is proposed to explain the superlubricity and near-wearless sliding behavior of these carbon films

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making

    Quantitative Evaluation of the Carbon Hybridization State by Near Edge X-Ray Absorption Fine Structure Spectroscopy.

    Get PDF
    The characterization of the local bonding configuration of carbon in carbon-based materials is of paramount importance since the properties of such materials strongly depend on the distribution of carbon hybridization states, the local ordering, and the degree of hydrogenation. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectroscopy is one of the most powerful techniques for gaining insights into the bonding configuration of near-surface carbon atoms. The common methodology for quantitatively evaluating the carbon hybridization state using C 1s NEXAFS measurements, which is based on the analysis of the sample of interest and of a highly ordered pyrolytic graphite (HOPG) reference sample, was reviewed and critically assessed, noting that inconsistencies are found in the literature in applying this method. A theoretical rationale for the specific experimental conditions to be used for the acquisition of HOPG reference spectra is presented together with the potential sources of uncertainty and errors in the correctly computed fraction of sp(2)-bonded carbon. This provides a specific method for analyzing the distribution of carbon hybridization state using NEXAFS spectroscopy. As an illustrative example, a hydrogenated amorphous carbon film was analyzed using this method, and showed good agreement with X-ray photoelectron spectroscopy (which is surface sensitive). Furthermore, the results were consistent with analysis from Raman spectroscopy (which is not surface sensitive), indicating the absence of a structurally different near-surface region in this particular thin film material. The present work can assist surface scientists in the analysis of NEXAFS spectra for the accurate characterization of the structure of carbon-based materials

    Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas

    Get PDF
    In this study, we investigated the friction and wear performance of diamondlike carbon films (DLC) derived from increasingly hydrogenated methane plasmas. The films were deposited on steel substrates by a plasma-enhanced chemical vapor deposition process at room temperature and the tribological tests were performed in dry nitrogen. Tests results revealed a close correlation between the hydrogen in source gas plasma and the friction and wear coefficients of the DLC films. Specifically, films grown in plasmas with higher hydrogen-to-carbon ratios had much lower friction coefficients and wear rates than did films derived from source gases with lower hydrogen-to-carbon ratios. The lowest friction coefficient (0.003) was achieved with a film derived from 25% methane--75% hydrogen, while a coefficient of 0.015 was found for films derived from pure methane. Similar correlations were observed for wear rates. Films derived from hydrogen-rich plasmas had the least wear, while films derived from pure methane suffered the highest wear. We used a combination of surface analytical methods to characterize the structure and chemistry of the DLC films and worn surfaces

    Lessons from dynamic cadaver and invasive bone pin studies: do we know how the foot really moves during gait?

    Get PDF
    Background: This paper provides a summary of a Keynote lecture delivered at the 2009 Australasian Podiatry Conference. The aim of the paper is to review recent research that has adopted dynamic cadaver and invasive kinematics research approaches to better understand foot and ankle kinematics during gait. It is not intended to systematically cover all literature related to foot and ankle kinematics (such as research using surface mounted markers). Since the paper is based on a keynote presentation its focuses on the authors own experiences and work in the main, drawing on the work of others where appropriate Methods: Two approaches to the problem of accessing and measuring the kinematics of individual anatomical structures in the foot have been taken, (i) static and dynamic cadaver models, and (ii) invasive in-vivo research. Cadaver models offer the advantage that there is complete access to all the tissues of the foot, but the cadaver must be manipulated and loaded in a manner which replicates how the foot would have performed when in-vivo. The key value of invasive in-vivo foot kinematics research is the validity of the description of foot kinematics, but the key difficulty is how generalisable this data is to the wider population. Results: Through these techniques a great deal has been learnt. We better understand the valuable contribution mid and forefoot joints make to foot biomechanics, and how the ankle and subtalar joints can have almost comparable roles. Variation between people in foot kinematics is high and normal. This includes variation in how specific joints move and how combinations of joints move. The foot continues to demonstrate its flexibility in enabling us to get from A to B via a large number of different kinematic solutions. Conclusion: Rather than continue to apply a poorly founded model of foot type whose basis is to make all feet meet criteria for the mechanical 'ideal' or 'normal' foot, we should embrace variation between feet and identify it as an opportunity to develop patient-specific clinical models of foot function
    • …
    corecore