547 research outputs found

    How to build a biological machine using engineering materials and methods

    Get PDF
    We present work in 3D printing electric motors from basic materials as the key to building a self-replicating machine to colonise the Moon. First, we explore the nature of the biological realm to ascertain its essence, particularly in relation to the origin of life when the inanimate became animate. We take an expansive view of this to ascertain parallels between the biological and the manufactured worlds. Life must have emerged from the available raw material on Earth and, similarly, a self-replicating machine must exploit and leverage the available resources on the Moon. We then examine these lessons to explore the construction of a self-replicating machine using a universal constructor. It is through the universal constructor that the actuator emerges as critical. We propose that 3D printing constitutes an analogue of the biological ribosome and that 3D printing may constitute a universal construction mechanism. Following a description of our progress in 3D printing motors, we suggest that this engineering effort can inform biology, that motors are a key facet of living organisms and illustrate the importance of motors in biology viewed from the perspective of engineering (in the Feynman spirit of "what I cannot create, I cannot understand")

    AVERT2(a very early rehabilitation trial, a very effective reproductive trigger): retrospective observational analysis of the number of babies born to trial staff

    Get PDF
    Objective: To report the number of participants needed to recruit per baby born to trial staff during AVERT, a large international trial on acute stroke, and to describe trial management consequences. Design: Retrospective observational analysis. Setting: 56 acute stroke hospitals in eight countries. Participants: 1074 trial physiotherapists, nurses, and other clinicians. Outcome measures: Number of babies born during trial recruitment per trial participant recruited. Results: With 198 site recruitment years and 2104 patients recruited during AVERT, 120 babies were born to trial staff. Births led to an estimated 10% loss in time to achieve recruitment. Parental leave was linked to six trial site closures. The number of participants needed to recruit per baby born was 17.5 (95% confidence interval 14.7 to 21.0); additional trial costs associated with each birth were estimated at 5736 Australian dollars on average. Conclusion: The staff absences registered in AVERT owing to parental leave led to delayed trial recruitment and increased costs, and should be considered by trial investigators when planning research and estimating budgets. However, the celebration of new life became a highlight of the annual AVERT collaborators’ meetings and helped maintain a cohesive collaborative group

    Potential Role of Inorganic Polyphosphate in the Cycling of Phosphorus Within the Hypoxic Water Column of Effingham Inlet, British Columbia

    Get PDF
    [1] The upper basin of Effingham Inlet possesses permanently anoxic bottom waters, with a water column redox transition zone typically occurring at least 40 m above the sediment‐water interface. During our sampling campaign in April and July 2007, this redox transition zone was associated with sharp peaks in a variety of parameters, including soluble reactive phosphorus (SRP) and total particulate phosphorus (TPP). Based on sequential extraction results, TPP maxima exhibited preferential accumulation of an operationally defined class of loosely adsorbed organic phosphorus (P), which may contain a substantial fraction of polyphosphate (poly‐P). This poly‐P may furthermore be involved in the redox‐dependent remobilization of SRP. For example, direct fluorometric analysis of poly‐P content revealed that particulate inorganic poly‐P was present at concentrations ranging from 1 to 9 nM P within and several meters above the TPP maximum. Below the depth of 1% oxygen saturation, however, particulate inorganic poly‐P was undetectable

    Training a terrain traversability classifier for a planetary rover through simulation

    Get PDF
    A classifier training methodology is presented for Kapvik, a micro-rover prototype. A simulated light detection and ranging scan is divided into a grid, with each cell having a variety of characteristics (such as number of points, point variance and mean height) which act as inputs to classification algorithms. The training step avoids the need for time-consuming and error-prone manual classification through the use of a simulation that provides training inputs and target outputs. This simulation generates various terrains that could be encountered by a planetary rover, including untraversable ones, in a random fashion. A sensor model for a three-dimensional light detection and ranging is used with ray tracing to generate realistic noisy three-dimensional point clouds where all points that belong to untraversable terrain are labelled explicitly. A neural network classifier and its training algorithm are presented, and the results of its output as well as other popular classifiers show high accuracy on test data sets after training. The network is then tested on outdoor data to confirm it can accurately classify real-world light detection and ranging data. The results show the network is able to identify terrain correctly, falsely classifying just 4.74% of untraversable terrain

    Impact of climate change and development scenarios on flow patterns in the Okavango River

    Get PDF
    This paper lays the foundation for the use of scenario modelling as a tool for integrated water resource management in the Okavango River basin. The Pitman hydrological model is used to assess the impact of various development and climate change scenarios on downstream river flow. The simulated impact on modelled river discharge of increased water use for domestic use, livestock, and informal irrigation (proportional to expected population increase) is very limited. Implementation of all likely potential formal irrigation schemes mentioned in available reports is expected to decrease the annual flow by 2% and the minimum monthly flow by 5%. The maximum possible impact of irrigation on annual average flow is estimated as 8%, with a reduction of minimum monthly flow by 17%. Deforestation of all areas within a 1 km buffer around the rivers is estimated to increase the flow by 6%. However, construction of all potential hydropower reservoirs in the basin may change the monthly mean flow distribution dramatically, although under the assumed operational rules, the impact of the dams is only substantial during wet years. The simulated impacts of climate change are considerable larger that those of the development scenarios (with exception of the high development scenario of hydropower schemes) although the results are sensitive to the choice of GCM and the IPCC SRES greenhouse gas (GHG) emission scenarios. The annual mean water flow predictions for the period 2020-2050 averaged over scenarios from all the four GCMs used in this study are close to the present situation for both the A2 and B2 GHG scenarios. For the 2050-2080 and 2070-2099 periods the all-GCM mean shows a flow decrease of 20% (14%) and 26% (17%) respectively for the A2 (B2) GHG scenarios. However, the uncertainty in the magnitude of simulated future changes remains high. The simulated effect of climate change on minimum monthly flow is proportionally higher

    The language of intervention: A review of concepts and terminology in wetland ecosystem repair

    Get PDF
    As programmes and projects aimed at addressing wetland degradation gain momentum in South Africa, it is critical that related ideas are communicated among and between researchers, practitioners, management agencies, land-owners and the general public in a common language. This paper explores the meaning of ‘restoration’ and ‘rehabilitation’; terms that we suggest are key to understanding and advancing South Africa’s efforts to address wetland degradation. In its essence, the paper is a critical review of wetland ecosystem repair concepts and terminology from local and international literature. The major products of the paper are proposed definitions of the terms ‘restoration’ and ‘rehabilitation’ in a South African wetland science and management context. Although the terms are often used interchangeably, we argue that their absolute distinction will allow scientists and practitioners to better understand what it is that ecosystem repair interventions aim to achieve. We suggest that the terms be distinguished on the basis of what could be considered their respective ecological starting points, where ‘restoration’ applies to part of a system or a system in its entirety that has been completely and permanently, but not irreparably altered, and essentially removed from the landscape, and ‘rehabilitation’ applies to part of a system or a system in its entirety that has not been removed from the landscape through complete and permanent alteration, but is in a degraded state. Thus, ‘wetland restoration’ is defined as the process of reinstating natural ecological driving forces within part or the whole of a completely and permanently altered wetland to recover former or desired ecosystem structure, function, biotic composition and ecosystem services, while ‘wetland rehabilitation’ is defined as the process of reinstating natural ecological driving forces within part or the whole of a degraded wetland to recover former or desired ecosystem structure, function, biotic composition and ecosystem services
    • 

    corecore