
Research Article

Training a terrain traversability
classifier for a planetary rover
through simulation

Robert A Hewitt1, Alex Ellery2 and Anton de Ruiter3

Abstract
A classifier training methodology is presented for Kapvik, a micro-rover prototype. A simulated light detection and
ranging scan is divided into a grid, with each cell having a variety of characteristics (such as number of points, point variance
and mean height) which act as inputs to classification algorithms. The training step avoids the need for time-consuming and
error-prone manual classification through the use of a simulation that provides training inputs and target outputs. This
simulation generates various terrains that could be encountered by a planetary rover, including untraversable ones, in a
random fashion. A sensor model for a three-dimensional light detection and ranging is used with ray tracing to generate
realistic noisy three-dimensional point clouds where all points that belong to untraversable terrain are labelled explicitly.
A neural network classifier and its training algorithm are presented, and the results of its output as well as other popular
classifiers show high accuracy on test data sets after training. The network is then tested on outdoor data to confirm it can
accurately classify real-world light detection and ranging data. The results show the network is able to identify terrain
correctly, falsely classifying just 4.74% of untraversable terrain.

Keywords
Planetary rovers, planetary exploration, neural networks, autonomous navigation, LiDAR, classification

Date received: 22 January 2017; accepted: 28 August 2017

Topic: AI in Robotics; Human Robot/Machine Interaction
Topic Editor: Antonio Fernandez-Caballero
Associate Editor: D J Lee

Introduction

In robotics, there is a current focus on increasing autonomy,

so that less and less human interaction is necessary. Auton-

omous navigation is especially important in planetary explo-

ration, where human communication is limited by the large

distances between Earth and potential places to explore, such

as Mars.1 Moreover, in tasks such as mining,2 search and

recovery3 and rescue operations,4 the ability for an autono-

mous rover to understand and classify its surroundings is of

utmost importance.5 For these reasons, a neural network

classification system for light detection and ranging

(LiDAR) was investigated and is presented in this article.

Kapvik, a planetary micro-rover prototype built for the

Canadian Space Agency, is one such rover and is pictured

in Figure 1. The rover is required to make large

autonomous drives over unknown terrain, with limited

computational power. The rover makes use of a simulta-

neous localization and mapping (SLAM) algorithm called

FastSLAM 2.06 that works in tandem with a D* path plan-

ning algorithm7 that includes terrain traversability costs

similar to the algorithm demonstrated in the study by

1Mining Systems Laboratory, Queen’s University, Kingston, ON, Canada
2Carleton University, Ottawa, ON, Canada
3Ryerson University, Toronto, ON, Canada

Corresponding author:

Robert A Hewitt, Mining Systems Laboratory, Queen’s University, 35 5-th

Field Company Lane, Jackson Hall, Room 112, Kingston, ON K7L 3N6,

Canada.

Email: r.hewitt@queensu.ca

International Journal of Advanced
Robotic Systems

September-October 2017: 1–14
ª The Author(s) 2017

DOI: 10.1177/1729881417735401
journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

mailto:r.hewitt@queensu.ca
https://doi.org/10.1177/1729881417735401
http://journals.sagepub.com/home/arx
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1729881417735401&domain=pdf&date_stamp=2017-10-29

Ishigami et al.8 To achieve this, both LiDAR and stereo-

camera system are employed for use in different scenarios

(such as night and day, respectively) or together. This arti-

cle will detail the way in which a classifier is trained to

robustly classify the traversability of terrain using the Kap-

vik rover’s LiDAR measurements.

For use as an input in path planning algorithms, it is

important to classify LiDAR data as traversable or untra-

versable. A LiDAR scan will typically contain at least tens

of thousands of data points.9,10 In the case of Kapvik’s

LiDAR, each data point contains a measurement of range,

bearing and tilt. These large data sets are usually unevenly

distributed, noisy, contain occlusions and spurious range

data due to edges on objects and moving objects.11 There

must be a way for the autonomous system to differentiate

which part of the scan constitutes an obstacle (i.e. untra-

versable) and which part can be safely navigated over (i.e.

traversable). Creating a simple 2 1
2
-dimensional elevation

map and an expert rule-based system that computes traver-

sability based on estimating height and slope has limita-

tions due to incomplete and uncertain sensor data.11–13

More complex maps that include information such as sur-

face normal estimation are computationally complex to

compute.14 Classifiers such as neural networks can handle

these issues in a robust and natural way and therefore a

neural network has been used for this article.

Neural networks are often used to solve classification

problems.15–17 They have been applied in speech recogni-

tion, character recognition and signal processing problems.

It has been shown that neural networks can be viewed as

universal approximators, and it has been demonstrated that

a single hidden layer neural network can approximate any

continuous function with support in a unit hypercube.18

Neural networks would seem worthy of investigation for

the three-dimensional (3D) LiDAR classification problem.

Work has been done by other researchers on classifying

aerial LiDAR data that generate elevation maps of limited

resolution,19,20 and some significant work has been done in

the case of 3D LiDAR from a rover perspective4,9,10,21–23

and more specifically other types of classifiers such as

Markov random fields,24 Bayesian classifiers,25 support

vector machines (SVMs)26 and fuzzy modelling.11 Hata

et al. successfully use a neural network to do such classi-

fication.27 More recently, convolutional neural networks

have gained attention for their ability to correctly classify

images that nears or exceeds human level accuracy.28

These types of networks have been adapted for use with

3D LiDAR data to detect vehicles29 and other objects.30

Extending classification to other metrics like lithological

information is also possible using LiDAR intensity data.31

In planetary robotics, much work has focused on terrain

parameter estimation32 and classification33 relying on mea-

surements from interoceptive sensors as the rover drives

over terrain. Exteroceptive measurements have also been

included in a self-supervised classification system.34

What this article contributes is an easily adaptable train-

ing system that can be applied to a wide range of terrain

types and avoids time-consuming hand-labelled target

scans to be used in classifier training. For the purposes

of this article, the training system has been applied to a

simple multilayer perceptron (MLP) neural network.

While many classifiers could be chosen, neural networks

are currently the state of the art in pattern recognition and

machine learning,35 and the potential to expand our net-

work model to some of the more recent developments in

the literature is possible. It makes use of more information

from LiDAR scans than has been used in previous exam-

ples and includes information such as the rover’s estimated

pose. At the same time, using a neural network to assess

raw data, computationally complex tasks such as surface

normal estimation are not needed to compute traversabil-

ity. The neural network presented also seamlessly incor-

porates different point cloud densities and sensor noise

attributes. An effort has been made to keep the overall

neural network structure simple, allowing easy adjustment

to the inputs and outputs.

In ‘Neural network development’ section, the neural

network structure is explained along with the methodology

for training. The LiDAR configuration and simulation

used to train the neural network is explained in ‘LiDAR

configuration and terrain simulation’ section. The perfor-

mance of several other classifiers trained on this data is

compared to the neural network and test results using the

neural network in a real-world environment are presented

in ‘Results’ section.

Figure 1. Kapvik micro rover.

2 International Journal of Advanced Robotic Systems

Neural network development

The neural network structure presented here is an MLP

neural network.15 The MLP was chosen for its simplicity

and to test the concepts presented in this article but these

concepts could easily be extended to other classifiers and

was tested on a variety available in MATLAB®.36 An MLP

has an input layer, output layer and in-between one or more

so-called hidden layers as shown in Figure 2. Neurons are

connected in layers by weighting factors that are represented

by lines. The input layer neuron values are multiplied by the

weighting factors, and the result is summed with all other

weighted input neuron values as the input to an activation

function in the next layer of neurons. The activation function

used in this article is the sigmoid function

f ðxÞ ¼ 1

1þ e�x
(1)

where x is the summation of all weighted neuron outputs from

the previous layer. This constrains the output of the function

to a value between 0 and 1. The weight that connects the ith

neuron output, f ðxi
kÞ, in the kth layer to the jth neuron input in

the ðk þ 1Þ layer is denoted as w
i;j
kjkþ1

. The input to the jth

neuron in the ðk þ 1Þ layer is then computed as

x
j
kþ1 ¼

XNk

i¼1

w
i;j
kjkþ1

f ðxi
kÞ 8i ¼ 1:::Nk

8j ¼ 1:::Nkþ1

8k ¼ 1:::ðNL � 1Þ

(2)

where Nk is the number of neurons in the kth layer and NL is

the total number of layers in the network.

Neural networks must be trained so that the weighting

factors produce an output that is expected based on the

initial input to the network. To avoid the need for the

collection of large data sets and subsequent manual classi-

fication, the network undergoes training on a simulated

data set representing LiDAR scans of various terrains and

is shown to generalize well enough that when presented

with new measurements from actual outdoor environments,

it will correctly classify the terrain. What follows is a

detailed description of the neural network input, output and

training formulation.

Cell grid

As demonstrated in the study by Hata et al.,27 the points in

a new set of measurements are first organized in a cell grid

overlaying the map. This is done by transforming the

measurements into the global reference frame based on

the estimate of the rover pose and then assigning each

point to a cell.

Each cell represents a certain area of the map with a and

b denoting the row and column index, respectively, starting

from bottom left as shown in Figure 3. Some associated

values are assigned to each cell based on the LiDAR mea-

surements contained within it. The dimensions of each cell

are chosen to be approximately the diameter of a rover

wheel, as this is the typical definition of an untraversable

obstacle for a rocker-bogie type rover.37

For instance, if a cell that covers the range of points

within 3–3.1 m in the x- and y-directions is selected, all

points that fall within this range are considered. The val-

ues the cell takes on include things such as the mean

height in comparison to the rover’s estimated height, the

variance of the features in the z-direction or the difference

between the maximum and minimum positions of features

in the z-direction.

The neural net classifies each cell in the grid based on

these inputs. To train the neural net, a set of measurements

Inputs Outputs

Hidden

layer

Figure 2. Multilayer perceptron neural network.

Figure 3. Cell grid to partition LiDAR scans. LiDAR: light
detection and ranging.

Hewitt et al. 3

that are already classified are presented to the neural net-

work, and based on the difference between its output and

the known classification, the weights are adjusted as dis-

cussed in ‘Methodology for training’ section.

The number of neurons used for the hidden layers is

determined empirically. There are no specific accuracy

requirements, so the neural network is tested at various num-

bers of neurons, with the goal of being as accurate as possi-

ble using as few neurons as possible in each hidden layer.

To begin testing the neural network, the output is limited

to a single neuron, with a value between 0 and 1. Different

regions between 0 and 1 represent different classifications.

For instance, in a binary classification, 0 represents com-

pletely traversable terrain and 1 represents completely

untraversable terrain. The simplest output is assigned a

classification based on the following rule

Ca;b ¼
Untraversable if Oa;b � 0:5

Traversable if Oa;b < 0:5

�

where Oa;b is the neural network output at the specified cell.

If it is preferred to have a smoother gradient that captures

the relative cost of traversing the terrain, the rule can sim-

ply contain more classification regions between 0 and 1 or

report the output between 0 and 1 directly.

The activation function shown in equation (1) has limits

of 0 and 1 as x goes to +1. If the network is trained for

these outputs, the weights will be driven to large values

that are unstable.17 Therefore, the network should be

trained on less extreme values. In the case of this neural

network, the output range is between 0.1 and 0.9, with

traversable terrain being labelled 0.1 and untraversable

terrain being labelled 0.9.

The neural net requires a relatively large and varied data

set for training. This helps the neural net generalize which

is important when it is presented later with unfamiliar ter-

rain measurements. To offset the large amount of time and

effort that is required to classify many LiDAR scans manu-

ally, a simulation was used to generate a set of simulated

LiDAR scans belonging to randomly generated terrain. The

terrain is then automatically classified as it is generated.

For instance, when terrain is generated, the ground is

labelled as traversable terrain, whereas rocks are labelled

as untraversable. When the simulated LiDAR scans these

different areas, the training set contains the correct labels

for each scanned point to be used for supervised training.

This constitutes an improvement over previous classifica-

tion training methods that rely on manually labelled data

sets. The simulation developed for this article is discussed

in ‘LiDAR configuration and terrain simulation’ section.

Neural network input types

After dividing up the LiDAR range data into a cell format,

various inputs are derived for each cell that will help the

neural network determine what type of terrain that cell

represents. While some cells are classified as empty, the

ones that are not empty will contain one or more LiDAR

data points. As an input, specific LiDAR data points are

considered as well as characteristics of the group as a

whole. Information about the rover’s pose is also used to

influence how the neural network perceives a cell. Any-

thing that might influence the way the LiDAR scanner

scans the environment (e.g. rover pose) as well as may

describe differences between different types of terrain

(e.g. rock or sand) is potential inputs to the neural network.

What follows is a brief description of each input used in the

terrain classifying neural network. For the sake of simpli-

city, the following values are always assumed to be encap-

sulated within a single cell located at (a, b) in the cell grid.

� Mean height: The first input to the neural network is

the cell’s mean height. The calculation for the mean

height is taken as the position of the rover in the

z-direction, zr, subtracted from the mean position in

the z-direction of all LiDAR data points in the cell,

�zm, both with respect to the global reference frame

�zh ¼ �zm � zr (3)

If the rover is operating on a two-dimensional (2D)

ground plane with obstacles scattered about, this

input alone could be used to determine whether a cell

represented untraversable terrain or not. However, in

3D terrain, there is the potential for hills and valleys.

To the rover, these might look like obstacles but are

actually smooth slopes that the rover can easily tra-

verse. To be able to differentiate between the two is

of obvious importance, so other inputs from each cell

must be considered.

� Variance: The variance of the height of LiDAR data

points in a given cell is an indication of what type of

terrain it represents. Solid obstacles and terrain will

have a small variance, whereas terrain that includes

grass may have a larger variance in height. The

variance in height for each cell is calculated as

s2
z ¼

1

M

XM
i¼1

ðzhi
� �zhÞ2 (4)

where M is the number of points in each cell and the

subscript i denotes the ith point.

� Absolute height difference: The difference between

the maximum and minimum height in a given cell.

Data points belonging to untraversable terrain will

have larger differences in height over the span of a

single cell than traversable terrain.

� Number of LiDAR data points: The number of points in

a cell will in general be higher for untraversable terrain.

� Rover orientation: The rover orientation in the pitch

and roll directions has an effect on what is considered

untraversable. For instance, if the rover is pitched

forward, looking down a hill, an obstacle on the hill

4 International Journal of Advanced Robotic Systems

has a larger perceived height difference than if the

rover sees a similar obstacle on flat terrain.

� Mean height of adjacent cells: Slopes are more likely

to have adjacent cells that change gradually in height

than cells that include obstacles where the edges will

typically have large drop-offs in height. This is illu-

strated in Figure 4.

Methodology for training

The methods used to train a neural network are extremely

important. Improper training can lead to neural networks

that are not well generalized. They may perform well on a

training set, but because the training set doesn’t fully rep-

resent the range of data encountered in real measurements,

it may fail to generalize well enough to work in a real

scenario. While part of the reason a simulation is used in

training is to reduce the time required to label the training

set, it is also used to increase the types of terrain encoun-

tered by the rover. For instance, if the data were obtained

from a few locations in and around a university campus

with the actual LiDAR, and then manually labelled, the

data set might not resemble the terrain located on Mars

or another common outdoor environment.

There is also a question of too much training data, where

the neural net is not able to encode the information from all

possibilities adequately. Using a simulation, the type and

volume of terrain the neural net is trained on is easily

controlled. However, simulations present new problems.

The terrain generated is a smooth surface described by a

polynomial, and the obstacles are polyhedron shapes. The

question is whether the neural network will be able to gen-

eralize these more basic geometries from the training set to

real data it receives while driving outdoors. In this article,

the training and validation steps are done through simula-

tion, and the testing set is from real-world scan data. The

neural network trained on simulated data must correctly

classify scans taken in the real world.

If the neural network fails on real data, the question

becomes whether some fundamental information is not

being given to the neural network causing it to fail or if the

training set itself needs to be changed, to more accurately

represent data, the rover will encounter in the real world.

The neural network presented in this article is trained

using a nonlinear Kalman filter rather than the more pop-

ular backpropagation method. In the study by Singhal and

Wu,38 it was first shown that an extended Kalman filter

(EKF) could be used to train a neural network. In the study

by Ruck et al.,39 it was shown that backpropagation is a

degenerate form of the EKF, one in which the errors in the

weights are assumed to be uncorrelated, leading to poten-

tially less accurate results. This result and the potential to

reuse nonlinear Kalman filter algorithms already developed

for the state estimation algorithms of Kapvik led to its use

as the training method for the presented neural network.

To properly estimate each of the weight states, the train-

ing set should be at least as large as the number of weights.

For the initial training, a new surface is generated for each

training set input/output pair and a measurement is taken

by placing the rover in a random location. This ensures that

the terrain is different in each scan. After one scan, each of

the inputs is calculated and formed into the neural network

input vector un discussed in ‘Neural network input types’

section and an output based on the untraversable label for

each cell, determined by simulation, denoted as dn. For

instance, if any of the data points in a cell belong to an

obstacle, the cell is labelled untraversable and dn will be

equal to 0.9.

Before training, the data set is divided into three sec-

tions: 70% of the data set is reserved for training, 15% for

validation and 15% for testing. A nonlinear Kalman filter

trains the weights of the neural network as shown in Figure

5 using the training part of the data set. After the training

for a particular input is accomplished, the weights are

passed onto the next iteration of the Kalman filter along

with a new training input/output pair. To avoid overfitting,

the validation set error is checked at set intervals during

Figure 4. Comparison of adjacent cell values for slopes (left) and
obstacles (right).

Training

input

vector, un

MLP:

Weight vector = ŵn

Desired

response,

dn

Kalman filter

Simulation ŵn

bn

Figure 5. Neural network trained by Kalman Filter.

Hewitt et al. 5

training. When the validation set error is determined to be

rising, training ends and the network reverts to the esti-

mated weights at the iteration where validation set error

was at a minimum. The test set is used separately, after

training is complete, to evaluate the performance of the

neural network against other models or classifier types.

EKF formulation

What follows is a short description of the design of an EKF

for use in training a neural network, which shows the rela-

tion between it and the more common backpropagation

training rule. It is straightforward to extend this formulation

to other nonlinear Kalman filters (e.g. an unscented

Kalman filter) where it is unnecessary to explicitly com-

pute the Jacobian of the neural network model. We adopt

the notation in the study by Barfoot,40 where estimates

based on a prior and the latest input are accented with a

ð̌�Þ symbol and corrected estimates are accented with a ð̂:Þ
symbol. We constrain our belief function for the weight

estimate at iteration n, ŵn, to be Gaussian

pðwnj�w0; u1:n; d1:nÞ ¼ N ðŵn; P̂nÞ (5)

where �w0 is the initialized weight value prior, and P̂n is the

covariance of the weight estimate. The noise variables for

the inputs, vn, and measurements, nn, are also treated as

Gaussian with diagonal covariance matrices Qn and Rn,

respectively

vn*Nð0;QnÞ (6)

nn*Nð0;RnÞ (7)

The process and measurement models are defined as

wn ¼ fðwn�1Þ þvn (8)

¼ wn�1 þvn (9)

dn ¼ bðwn; unÞ þ nn (10)

where b is the neural network model output. The EKF

prediction and measurement correction steps can then be

written as

Prediction : �Pn ¼ Fn�1P̂nFT
n�1 þQn (11)

�wn ¼ ŵn�1 (12)

Kalmangain : Kn ¼ �PnBT
n ðBn

�PnBT
n þ RnÞ�1

(13)

P̂n ¼ ð1�KnBnÞ�Pn (14)

Correction : ŵn ¼ �wn þKn

�
dn � bð�wn; unÞ

�
(15)

Because the process model in the prediction step follows a

random walk model (i.e. static þ noise), Fn�1 is simply the

identity matrix. The Jacobian of the network model, B,

results from linearizing the network at the current weight

estimates

Bn ¼
@bð�wn; un;nnÞ

@wn

j�wn;un;0
(16)

As shown in the study by Ruck et al.,39 the backpropa-

gation training rule reduces to

Dw ¼ �
�

dn � bð�wn; un; 0Þ
�

Bn (17)

where � is the so-called learning rate, and similarly the

EKF algorithm reduces to

Dw ¼ ap
�

dn � bð�wn; un; 0Þ
�

Bn (18)

if the following assumptions are made: (1) Pn ¼ pI and (2)

ðBn
�PnBT

n þ RnÞ�1 ¼ aI. Therefore, the update in the

weight estimates is the same as the backpropagation train-

ing rule with � ¼ ap. Given the first assumption, the errors

in the weights are uncorrelated (P remains diagonal) which

is obviously untrue as the weights in the upper layers con-

tribute to the derivatives of the network with respect to the

weights of the lower layers. The ability of the filter to modify

K over time is also lost, and therefore the size of the update

at each iteration will remain the same. Without going into

the derivation here, it is also shown in the study by Ruck

et al.39 that the conditions to satisfy the second assumption

are not generally met. It’s clear that backpropagation is not

using all the information available to update the weights.

In the study by Chernodub,41 it is shown that Kalman

filters have comparable performance to the second-order

batch optimization methods (e.g. gradient descent) for

training neural networks used in classification problems,

with the added benefit of being easily run in a real-time

fashion. However, as shown in the study by Puskorius and

Feldkamp,42 the computational complexity of an EKF esti-

mating a neural network with p outputs and s weights is

Oðps2Þ and its storage requirements are Oðs2Þ, which for

large neural networks makes the EKF much more compu-

tationally demanding than backpropagation. To remedy

this, a decoupled EKF was introduced that decouples

weights into mutually exclusive groups, which results in

a covariance matrix that is more sparse and block diagonal.

The number of groups can be tuned between one and s

groups, where one group is equivalent to a standard EKF,

encompassing the entire covariance, and having s groups

assumes the errors in the weights are uncorrelated and is

equivalent to backpropagation. One suggested grouping is

to group weights that share a single input node with each

other. This allows for flexibility when applying this algo-

rithm to different scenarios, for example, training offline

with a powerful computer versus online on different rover

platforms with different computational abilities. It is also

possible to use other nonlinear Kalman filtering algorithms

for this purpose, including ones that do not require explicit

calculation of the Jacobians for each network model. For

the purposes of this article, only one group was used (all

weight covariances were estimated) to obtain the most

6 International Journal of Advanced Robotic Systems

accurate results, but the flexibility to tune the algorithm to

our needs and to swap in nonlinear Kalman filter algo-

rithms already developed for SLAM has proven useful.

LiDAR configuration and terrain
simulation

A typical LiDAR will return a range and bearing which can be

converted to a Cartesian position with knowledge of the pose

of the LiDAR device. To avoid the expense of a 3D LiDAR

scanner, 2D LiDAR scanners can be made to tilt about an axis

using a tilt device, and at set intervals take 2D scans as shown

in Figure 6. The combination of 2D scans and tilt intervals can

be used to create a 3D scan that approximates scans that a 3D

scanner creates. The expected operating environments and

stop and go nature of the micro-rover Kapvik allow the use

of scans taken with the rover in a stationary pose, devoid of

any moving objects such as people or vehicles.

For this article, a Directed Perception PTU D46 (FLIR

Systems, Burlingame, California, USA) is used as the tilt

unit and a Hokuyo URG-04LX (Hokuyo Automatic Co.,

Ltd., Osaka, Japan) range finder. The LiDAR and tilt unit

are mounted together on a Pioneer rover centred at the front

of the rover as shown in Figure 7. The Pioneer rover was

used for testing the algorithm while Kapvik was being built;

however, the scans taken by the LiDAR sensor are almost

identical for either platform.

To train the neural network, a simulation developed in

MATLAB was used. The simulation models 3D terrain

such as sloping hills and rocks, a rover traversing over this

terrain and a LiDAR measuring the terrain from the rover’s

location. Note that training is done offline, prior to the

robot operating in the field; therefore, the computational

cost of such a simulation is less critical. It should be noted

that other methods of simulating the scenario, such as the

Gazebo simulator43 would be equally appropriate.

3D terrain

For the purposes of Kapvik, there are two basic types of

terrain. The first is traversable terrain, which represents

sloping hills and valleys as well as flat surfaces. In the

real-world tests done, this includes surfaces such as sand,

cement and grass. The second type is untraversable terrain.

This includes objects such as rocks, trees, bushes and other

objects that are laying on the ground terrain and are larger

than one Kapvik wheel diameter in height above the surface.

The ground terrain is constructed by randomly generat-

ing points in two dimensions and convolving this with a

Gaussian filter using the method outlined in the study by

Garcia and Stoll.44 The convolution is achieved using the

fast Fourier transform function in MATLAB. A polynomial

is then fitted to the result such that

zT ¼ f ðx; yÞ (19)

where zT is the height of the terrain in the global reference

frame at the surface position located at ðx; yÞ. By randomly

producing the 2D set of surface points and the parameters

of the Gaussian filter, a different ground shape is generated

each time a training set is created, as shown in Figure 8(a).

To generate obstacles, a convex polyhedron model is

used for the purpose of speeding up LiDAR simulation.

Unlike an open-ended surface, closed surfaces such as

rocks can be represented by a polyhedron. Efficient ray

tracing operations for polyhedron are well established in

computer graphics literature and the method used in the

study by Haines45 is used for this work. This allows the

creation of many such objects in a given map. These

objects are varied in size and location randomly, with a

mean Z position of zero in relation to the ground it resides

on. Much like rocks in nature, some of the polyhedron

resides below the surface it is laying on.

Figure 6. 2D scanner used for 3D scans. 2D: two-dimensional.

Figure 7. Pioneer rover with tilt unit and LiDAR attached.
LiDAR: light detection and ranging.

Hewitt et al. 7

The end result of these two processes is a terrain with

varying degrees of slope and a random distribution of

obstacles at different heights above the ground terrain that

are untraversable as shown in Figure 8(a). From the view-

point of a LiDAR, this type of terrain closely matches the

type of terrain encountered in an outdoor environment. In

addition to these two main types of terrain, one can adjust

the simulation to account for trees using cylindrical

shapes instead of polyhedron shapes. To simulate grass

or bushes, adding variance to the measurements generated

from designated areas of traversable or untraversable ter-

rains will differentiate these terrains from the ‘regular’

terrain in a realistic way.

Rover model

The rover used in this simulation is modelled after a differ-

ential drive rover such as the Pioneer rover that was used for

some of the outdoor tests. Kapvik may be approximated

similarly as it uses skid steering and the motor controllers

drive each side of wheels nominally at the same speed. A

differential drive rover forward kinematic model was sim-

plified to a unicycle model, with inputs of~vðtÞ and ~vðtÞ for

linear and angular velocity, respectively, at time t. Differen-

tial drive rovers are generally capable of turning in place so

this simplification is close to actual kinematic behaviour.

After the rover moves through one time step, the pose is

adjusted to conform to the terrain beneath it. To simplify

the simulation, it has been assumed that the surface is

smooth and that the wheels are always in contact with the

surface at a single point of contact. In the study by Tarokh

and McDermott,46 a kinematic model is developed to deter-

mine the rover wheel configuration given the constraints of

the rover’s x- and y-position and its heading, ’z, that has

been adjusted here for use on both differential drive and

rocker-bogie vehicle mobility types.

In addition, at each time step, the simulation determines

slope and height of the surface at the global x- and y-position

of each of the rover’s wheels. Based on the slope and height

of the surface mesh under each wheel, the pose of the rover

is optimized under the constraints of its position and its

current direction using the fminsearch function in

MATLAB. The end result is shown in Figure 8(a). To simu-

late bumpy and uneven terrain, some noise is added to the

control input vector.

For the purposes of the simulation, the rover is started at

a random position above the randomly generated terrain. It

is in general placed in a location somewhat close to an

obstacle so that at least one valid scan containing both

traversable and untraversable terrain is taken, but this can

be adjusted. The trajectory the rover takes can be changed

to avoid obstacles using a path planning algorithm, but for

the initial tests, the rover drove a limited distance so this

was unnecessary.

To accurately simulate a real-world scenario, the rover’s

pose in the global reference frame is estimated using

FastSLAM 2.0.6 The estimated pose and uncertainty is used

as one set of inputs to the neural net, rather than the ‘true’

simulated rover pose. The measurements supplied to the

FastSLAM 2.0 algorithm include a simulated IMU that can

observe the rover’s pitch and roll, a sun sensor that

observes heading and the rover’s LiDAR measurements,

which are used to track features from multiple viewpoints

and allow the rover to observe the position of those features

and its own pose in the global reference frame. Each mea-

surement is summed with random Gaussian noise based on

sensor specifications.

LiDAR model

To simulate LiDAR scans, a set of ‘rays’ is generated, each

ray representing a single LiDAR measurement direction. In

our case, this consists of a set number of 2D scans at each

tilt interval. Each ray is calculated in its parameterized

form based on the position of two points. The first point

is the position of the LiDAR sensor and the second point

is defined by the tilt and bearing angles as well as the

maximum range of the LiDAR.

The next step is to determine the intersection points, if

any, between these rays and the surface mesh that repre-

sents the ground as well as the polyhedrons representing

objects. The ultimate goal is to determine, for each ray,

the intersection point that is the closest distance to the

LiDAR. To do this, the intersection points are calculated

for the ground first. A system of nonlinear equations is set

Figure 8. Examples of simulation used to train classifier. (a)
Simulated rover driving over sloping terrain. (b) Simulated LiDAR
scan.

8 International Journal of Advanced Robotic Systems

up using equation (19) and parameterized line equations.

Using MATLAB’s fmincon function, a solution for the

intersection point is found for each ray within the bound-

aries of the LiDAR field of view. These intersection points

are then compared to any intersection points with untra-

versable terrain.

The distance of each intersection point from the LiDAR

head position corresponds to the range measurement. The

intersection point with the smallest distance from the rover

is then selected as the measurement. After this selection,

Gaussian noise is added to the range measurement. The

bearing and tilt measurements are predefined by the reso-

lution of the LiDAR bearing and the tilt unit. An example

of the simulated LiDAR scan of an environment is shown

in Figure 8(b).

Results

With the neural network developed in ‘Neural network

development’ section and the simulation in ‘LiDAR con-

figuration and terrain simulation’ section, training of a

neural network can be accomplished. The algorithm was

run on a test set generated by the same simulation as the

training and validation sets. The neural networks were

trained with all inputs and the binary outputs discussed in

‘Neural network development’ section. The grid cell size

was set to 0.1 � 0.1 m2 and a varying number of hidden

layers and their corresponding number of neurons were

tested on the same data set. The maximum number of neu-

rons was limited to 32 and the maximum number of hidden

layers was limited to 3 to avoid high computational cost.

By testing all possible permutations, it was determined that

the best performance was obtained using 2 hidden layers,

with 16 neurons each.

For comparison, the same training, validation and test

sets from simulation were used to train and evaluate other

popular classifier options using the classification learner

tool available in MATLAB. The confusion matrices for the

top four performers are shown in Figure 9 which shows that

the neural network is 90.2% accurate and performs com-

parably to the algorithms in MATLAB: fine Gaussian SVM

at 89.0%, fine K-nearest neighbour (KNN) at 92.5% and

complex decision tree at 80.7%. While these results show

that the fine KNN algorithm performs slightly better than

the presented neural network algorithm, the neural network

algorithm was chosen for its flexibility to tune for perfor-

mance as discussed in ‘EKF formulation’ section and to

leave open the option to expand the algorithm to more

complex network architectures. However, this analysis

shows that the proposed training method is valid for a wide

array of classification algorithms.

Outdoor tests

The results in Figure 9 show that the neural network and

other classifiers have been successfully trained to

differentiate terrain (in this case as traversable or untra-

versable) in a simulated environment with 90.2% accu-

racy. The trained neural network was then tested on

actual outdoor data taken with the Hokuyo LiDAR scan-

ner. The goal was to output scans that separate traversable

and untraversable terrain, verified by visually inspecting

each classification and comparing to pictures taken at the

same time and place. The untraversable terrain that has

been classified can then be used as an input to path plan-

ning or data association problems.

Scans were taken on the Carleton University campus.

The environments chosen included large boulders, side-

walks, grass, trees, shrubs and brick walls. This presented

a number of varied terrain types for the neural network to

classify. An example of a classified scan is shown in Figure

10 with an original scan, classified scan and picture taken

from slightly above the LiDAR’s point of view. Lightly

coloured points represent traversable terrain, whereas

untraversable terrain is darkly coloured. In Figure 10(c),

the large boulder to the left seen in Figure 10(a) can be

seen to be classified correctly as untraversable, along with

the small rock shown to the extreme right of the image. The

boulder that appears in the middle-right of the image does

not appear in the LiDAR scan due to its distance from the

rover and the limited range of the Hokuyo range finder.

Petrie Island beach near Ottawa, Canada was used as a

testing ground for Kapvik’s chassis so the LiDAR classifi-

cation was tested on this terrain as well. This terrain is more

similar to a Martian environment than the other outdoor

measurements taken at Carleton’s campus.

Figure 9. Performance of several classifiers on test data set.
(a) Neural network. (b) Fine Gaussian SVM. (c) Fine KNN.
(d) Complex tree. SVM: support vector machine; KNN: K-nearest
neighbour.

Hewitt et al. 9

A SICK LMS LiDAR (SICK AG, Waldkirch, Ger-

many) and Husky (Clearpath Inc., Waterloo, Canada)

rover were used instead of the Hokuyo range finder and

Pioneer rover so the range of each scan was much larger.

To test a variety of features in the laser scans, sand was

shovelled and shaped to form slopes. In addition, rocks and

a bucket were placed in front of the rover to act as obsta-

cles. The sloping terrain should not be identified by the

rover as untraversable in most cases, whereas the rocks and

bucket should. A picture of the scan area is shown in

Figure 11(a) with the slopes and obstacles labelled. A scan

was taken and classified over this area. As in the previous

scans, the lightly coloured points represent traversable ter-

rain and darkly coloured points represent untraversable

terrain. The corresponding shapes in the classified scan

are labelled in Figure 11(b). The plot shows that all fea-

tures were correctly identified while leaving the sloping

terrain classified as traversable.

To quantitatively assess the performance of the LiDAR

classification, several different scans were taken at Petrie

Island beach. Each of the scans had a varying rover pose

and a different number of visible obstacles. The obstacles

were positioned differently for each scan. Each scan was

manually labelled and the LiDAR classifier output was com-

pared to this. The results of these tests are shown in Table 1.

While the overall scan classification is accurate, the untra-

versable classification does not perform as well as traversable

classification. Obstacles are generally sparsely located across

a LiDAR map. The majority of the error in classification

comes from the flat tops of rocks. These areas could in a

sense be considered traversable leaving the steep walls of tall

rocks as the true obstacle for the rover. To classify the whole

rock as untraversable, a greater range of neighbouring points

should be included in the neural network so this is captured in

the training step. In either case, the rover will not attempt to

drive over this terrain as it is surrounded by untraversable

points. Incorrect classification of untraversable terrain as tra-

versable makes up less than 1% of the untraversable points

that do not originate from the tops of rocks.

The Petrie Island quantitative results were then verified

by applying the algorithm to much richer data sets. In col-

laboration with the Canadian Space Agency and Neptec

Design Group Ltd, the algorithms were tested using the

integrated vision, imaging and geological mapping sensor

(IVIGMS)47 to generate dense scans of the Canadian Space

Agency’s planetary emulation terrain. The scans include

large boulders, sloping traversable terrain and steep cliffs.

Figure 11. Classified scan at Petrie Island, Ottawa, Canada. (a)
Photograph of scene. (b) Classified scan with darkly shaded cells
indicating untraversable terrain.

Table 1. Classifier performance on Petrie Island beach data set.

Number of classified untraversable points 11,687
Number of classified traversable points 308,800
Percentage of falsely classified untraversable points 4.74
Percentage of falsely classified traversable points 0.81
Percentage of total falsely classified points 0.96

Figure 10. Comparison of original and classified LiDAR scans on
Carleton University campus. (a) Photograph of scene. (b) Original
scan. (c) Classified scan with untraversable cells darkly shaded.
LiDAR: light detection and ranging.

10 International Journal of Advanced Robotic Systems

The scan pattern of the IVIGMS is unique; scans taken over

longer periods of time generate denser point clouds. The

classifier performed very well, despite being trained on a

much different scan pattern, as shown in Figure 12. It cor-

rectly identified all major obstacles, including differentiat-

ing between rocky and traversable sloping terrain. The

binary and direct outputs of the classifier are displayed in

Figure 12(b) and (c), respectively. The direct output is

scaled between lightly shaded and darkly shaded based

on the output between 0.1 and 0.9, respectively.

The majority of errors in classification were cells incor-

rectly labelled untraversable. These cells were mostly

located beyond 10 m, where the scan data were much sparser

on flat terrain. A correlation between scan density and fal-

sely classified cells can be seen in Figure 13 and on closer

inspection, the scan pattern creates the illusion of occlusions

where the data are sparse. For the purposes of the Kapvik

rover, a 10-m range of classification is acceptable for short-

term path planning; however, cell density is an input to the

neural network and it is acceptable that it advises caution in

areas that have not been adequately scanned.

The second data set presented in the study by Anderson

et al.48 makes use of an Autonosys (Autonosys Inc.,

Ottawa, Canada) scanning LiDAR (with a similar scanning

pattern to the LiDAR used at Petrie Island) in a gravel pit

located near Sudbury, Ontario that acted as a planetary

analogue shown in Figure 14. This data set contains much

more extreme changes in elevation and many different

types of terrain such as flat and steep terrain with small

rocks and boulders scattered across it. The classifier suc-

cessfully identified boulders and steep terrain as untraver-

sable, whereas smooth terrain at the bottom of a valley is

classified as traversable. The direct and binary outputs are

displayed in Figure 14.

Figure 12. Classified scan at Canadian Planetary Emulation Terrain. (a) Photograph of Canadian Planetary Emulation Terrain. (b) Scan
of area depicted in photograph, with cells shaded based on binary classifier output. (c) Classified scan with cells shaded based on direct
classifier output.

Hewitt et al. 11

Conclusion

The presented simulation-based training methodology

shows significant success in traversability classification

of LiDAR data, using different LiDAR sensors on different

types of terrain. Through simulation, changes in LiDAR

and terrain can easily be implemented and manually label-

ling data sets are avoided. This constitutes a major

improvement over previous classification training methods

that rely on manually labelled data sets, allowing a variety

of terrain to be tested and doing so in a fraction of the time.

The classified traversability of observed terrain can then be

used by guidance and navigation algorithms such as path

planning and SLAM. This will be particularly useful during

missions that contain dangerous, rocky terrain like that

Figure 13. Comparison between cell density and incorrect cell classifications. (a) Cell density of Canadian Planetary Emulation Terrain
scan; lightly shaded points belong to sparsely populated cells, darkly shaded points belong to densely populated cells. (b) Examples of
incorrect cell classifications (darkly shaded cells within ellipses) that correlate with sparsity.

Figure 14. Classified scan at Ethier Sand and Gravel Pit, Sudbury, Ontario, Canada. (a) Photograph of sand and gravel pit (credit: Ethier
Sand and Gravel Limited). (b) Mesh fitted to mean height of unclassified cell grid. (c) Classified scan with cells shaded based on binary
classifier output. (d) Classified scan with cells shaded based on direct classifier output.

12 International Journal of Advanced Robotic Systems

observed during the Viking Lander, Mars Pathfinder and

Mars Science Laboratory missions.

The output types and simulation complexity could

potentially be expanded upon to improve classification;

however, the proposed training methodology has demon-

strated that it is possible to train classifiers using only

simulation in the case of a planetary rover equipped with

a LiDAR sensor. Building off the work in the study by

Hewitt and Marshall,49 future improvements will involve

the use of LiDAR intensity measurements as additional

inputs to the classifier, as they provide an additional obser-

vation of the surface normal and the object reflectivity,

both indicative of different types of terrain.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of this

article.

Funding

The author(s) received no financial support for the research,

authorship, and/or publication of this article.

References

1. Baumgartner E. In-situ exploration of mars using rover sys-

tems. In: Space 2000 conference, Long Beach, CA, August

2000, pp. 1–9. AIAA.

2. Pool B. Scan registration for autonomous mining vehicles

using 3D-NDT. J Field Robot 2007; 24(10): 803–827.

3. Johnson A, Montgomery J and Matthies L. Vision guided

landing of an autonomous helicopter in hazardous terrain.

In: International conference on robotics and automation

(ICRA), Barcelona, Spain, April 2005, pp. 3966–3971. IEEE.

4. Sheh R, Kadous WM, Sammut C, et al. Extracting terrain

features from range images for autonomous random stepfield

traversal. In: International workshop on safety, security and

rescue robotics, Rome, Italy, 2007, pp. 1–6. IEEE.

5. Talukder A, Manduchi R, Rankin A, et al. Fast and reliable

obstacle detection and segmentation for cross-country navi-

gation. In: Intelligent Vehicle Symposium, Vol. 2, Versailles,

France, 2002, pp. 610–618. IEEE.

6. Montemerlo M, Thrun S, Koller D, et al. Fastslam 2.0: an

improved particle filtering algorithm for simultaneous loca-

lization and mapping that provably converges. In: Interna-

tional joint conference on artificial intelligence, Vol. 18,

Acapulco, Mexico, August 2003, pp. 1151–1156. Citeseer.

7. Ferguson D and Stentz A. Field d*: an interpolation-based path

planner and replanner. Int J Robot Res 2007; 28: 239–253.

8. Ishigami G, Nagatani K and Yoshida K. Path planning and

evaluation for planetary rovers based on dynamic mobility

index. In: International conference on intelligent robots and

systems (IROS), San Francisco, USA, September 2011, pp.

601–606. IEEE/RSJ.

9. Nüchter A, Surmann H and Hertzberg J. Automatic classifi-

cation of objects in 3D laser range scans. In: Intelligent

autonomous systems conference, Amsterdam, The Nether-

lands, March 2004, pp. 963–970. Citeseer.

10. Granström K and Schön T. Learning to close the loop from

3D point clouds. In: International conference on intelligent

robots and systems (IROS), Taipei, Taiwan, October 2010,

pp. 2089–2095. IEEE/RSJ.

11. Mandow A, Cantador TJ, Garcia-Cerezo A, et al. Fuzzy

modeling of natural terrain elevation from a 3D scanner

point cloud. In: International symposium on intelligent

signal processing. Floriana, Malta, September 2011, pp.

1–5. IEEE.

12. Gallant S. Neural network learning and expert systems.

Cambridge, MA: MIT Press, 1993.

13. Kasabov N. Foundations of neural networks, fuzzy systems and

knowledge engineering. Cambridge, MA: MIT Press, 1996.

14. Klasing K, Althoff D, Wollherr D, et al. Comparison of sur-

face normal estimation methods for range sensing applica-

tions. In: International conference on robotics and

automation (ICRA). Kobe, Japan, May 2009, pp.

3206–3211. IEEE.

15. Haykin S. Neural networks and learning machines, 3rd ed.

Upper Saddle River, NJ: Pearson Education, Inc., 2009.

16. Fausett L. Fundamentals of neural networks, 1st ed. New

York: Prentice Hall, 1994.

17. Masters T. Practical neural network recipes in Cþþ. San

Diego, CA: Academic Press, Inc., 1993.

18. Cybenko G. Approximation by superpositions of a sigmoidal

function. Math Control Signal Syst 1989; 2(4): 303–314.

19. Verma V, Kumar R and Hsu S. 3D building detection and

modeling from aerial LiDAR data. In: Computer society con-

ference on computer vision and pattern recognition (CVPR),

Vol. 2, New York City, NY, June 2006, pp. 2213–2220. IEEE.

20. Charaniya A, Manduchi R and Lodha S. Supervised para-

metric classification of aerial LiDAR data. In: Computer

vision and pattern recognition workshop (CVPRW),

Washington, DC, July 2004, pp. 30–30. IEEE.

21. Fujita T. 3D terrain measurement system with movable laser

range finder. In: International workshop on safety, security &

rescue robotics, Denver, CO, November 2009, pp. 1–6. IEEE.

22. Rekleitis I, Bedwani J and Dupuis E. Autonomous planetary

exploration using LiDAR data. In: International conference on

robotics and automation (ICRA), Kobe, Japan, May 2009,

pp. 2048–2053. IEEE.

23. Pellenz J, Neuhaus F, Dillenberger D, et al. Mixed 2D/3D

perception for autonomous robots in unstructured environ-

ments. In: RoboCup 2010. Singapore, June 2011, pp.

303–313. Springer-Verlag.

24. Wellington C, Courville A and Stentz A. Interacting Markov

random fields for simultaneous terrain modeling and obstacle

detection. In: Robotics: Science and systems. Cambridge,

MA, June 2005, pp. 1–8. The MIT Press.

25. Lalonde J, Vandapel N, Huber D, et al. Natural terrain clas-

sification using three-dimensional ladar data for ground robot

mobility. J Field Robot 2006; 23(10): 839–861.

26. Wurm K, Kümmerle R, Stachniss C, et al. Improving robot

navigation in structured outdoor environments by identifying

Hewitt et al. 13

vegetation from laser data. In: International conference on

intelligent robots and systems (IROS), St. Louis, MO, Octo-

ber 2009, pp. 1217–1222. IEEE/RSJ.

27. Hata A, Wolf D and Pessin G. Terrain mapping and classifi-

cation using neural networks. In: International conference on

hybrid information technology, Daejeon, Korea, pp. 438–442.

ACM.

28. Krizhevsky A, Sutskever I and Hinton GE. Imagenet classi-

fication with deep convolutional neural networks. In:

Advances in neural information processing systems, Decem-

ber 2012, pp. 1097–1105.

29. Li B, Zhang T and Xia T. Vehicle detection from 3D lidar

using fully convolutional network. In: Proceedings of

robotics: science and systems, AnnArbor, Michigan, USA,

June 2016. DOI: 10. 15607/RSS.2016.XII.042.

30. Maturana D and Scherer S. Voxnet: a 3D convolutional

neural network for real-time object recognition. In: Interna-

tional conference on intelligent robots and systems (IROS),

Hamburg, Germany, September 2015, pp. 922–928. IEEE/

RSJ.

31. Walton G, Mills G, Fotopoulos G, et al. An approach for

automated lithological classification of point clouds. Phys

Rev Lett 2016; 12: 1833–1841.

32. Setterfield T and Ellery A. Terrain response estimation using

an instrumented rocker-bogie mobility system. IEEE Trans

Robot 2012; 29: 172–188.

33. Cross M, Ellery A and Qadi A. Estimating terrain parameters

for a rigid wheeled rover using neural networks. J Terramech

2013; 50: 165–174.

34. Brooks CA and Iagnemma K. Self-supervised terrain classi-

fication for planetary surface exploration rovers. J Field

Robot 2012; 29(3): 445–468.

35. Schmidhuber J. Deep learning in neural networks: an over-

view. Neural Netw 2015; 61: 85–117.

36. MATLAB and Statistics and Machine Learning Toolbox Release

2017a. Natick, USA: The MathWorks Inc, 2017.

37. Lindemann R and Voorhees C. Mars exploration rover mobi-

lity assembly design, test and performance. In: International

conference on systems, man and cybernetics, Vol. 1, Big

Island, Hawaii, pp. 450–455. IEEE.

38. Singhal S and Wu L. Training multilayer perceptrons with the

extended Kalman filter. In: Advances in neural information

processing systems 1, Denver, USA, 1988, pp. 133–140. Mor-

gan Kauffman.

39. Ruck DW, Rogers SK, Kabrisky M, et al. Comparative anal-

ysis of backpropagation and the extended Kalman filter for

training multilayer perceptrons. Trans Patt Anal Mach Int

1992; 14(6): 686–691.

40. Barfoot T. State estimation for robotics, chapter recursive

discrete time estimation. Cambridge: Cambridge University

Press, 2017.

41. Chernodub A. Training neural networks for classification

using the extended Kalman filter: a comparative study. Opt

Memory Neural Netw 2014; 23(2): 96–103.

42. Puskorius GV and Feldkamp LA. Decoupled extended

Kalman filter training of feedforward layered networks.

In: International joint conference on neural networks,

Seattle, USA, July 1991, pp. 771–777.

43. Rusu R, Maldonado A, Beetz M, et al. Extending player/

stage/gazebo towards cognitive robots acting in ubiquitous

sensor equipped environments. In: ICRA workshop for

networked robot systems, Rome, Italy, April 2007, pp. 1–8.

44. Garcia N and Stoll E. Monte Carlo calculation of

electromagnetic-wave scattering from random rough sur-

faces. Phys Rev Lett 1984; 52: 1798–1801.

45. Haines E.Fast ray-convex polyhedron intersection: Graphics

gems II, San Diego: Academic Press, 1991. pp. 247–250.

46. Tarokh M and McDermott G. Kinematics modeling and ana-

lyses of articulated rovers. Trans Robot 2005; 21(4): 539–553.

47. Dupuis E and Martin E. An overview of recent Canadian

space agency activities in space robotics. In: International

symposium on artificial intelligence, robotics and automation

in space (i- SAIRAS), Turin, Italy, pp. 601–606.

48. Anderson S, McManus C, Dong H, et al. The gravel pit lidar-

intensity imagery dataset. Technical report, University of

Toronto Technical Report ASRL-2012-ABL001, Toronto, 2013.

49. Hewitt R and Marshall J. Towards intensity-augmented slam

with lidar and TOF sensors. In: International conference on

intelligent robots and systems (IROS), Hamburg, Germany,

September 2015, pp. 1956–1961. IEEE.

14 International Journal of Advanced Robotic Systems

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 266
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 175
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50286
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 266
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 175
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50286
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 900
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 175
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50286
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU <FEFF005500730065002000740068006500730065002000530061006700650020007300740061006e0064006100720064002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e006700200077006500620020005000440046002000660069006c00650073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760037002e0030002e00200043007200650061007400650064002000620079002000540072006f00790020004f00740073002000610074002000530061006700650020005500530020006f006e002000310031002f00310030002f0032003000300036002e000d000d003200300030005000500049002f003600300030005000500049002f004a0050004500470020004d0065006400690075006d002f00430043004900540054002000470072006f0075007000200034>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 9
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [288 288]
 /PageSize [612.000 792.000]
>> setpagedevice

