17,320 research outputs found

    Serotonin Modulates Oscillations of the Membrane Potential in Isolated Spinal Neurons from Lampreys

    Get PDF
    Studies were performed on spinal neurons from lampreys isolated by an enzymatic/mechanical method using pronase. The effects of 100 µM serotonin (5-HT) on membrane potential oscillations induced by a variety of excitatory amino acids were studied. 5-HT was found to depolarize branched cells (presumptive motoneurons and interneurons) by 2–6 mV without inducing membrane potential oscillations. However, when oscillations were already present because of an excitatory amino acid, 5-HT changed the parameters of these oscillations, increasing the amplitudes of all types of oscillations, increasing the frequency of irregular oscillations, and increasing the duration of the depolarization plateaus accompanied by action potentials. Serotonin modulation of the effects of excitatory amino acids and the electrical activity of cells in the neural locomotor network facilitates motor activity and leads to increases in the contraction of truncal muscles and more intense movements by the animal. The possible mechanisms of receptor coactivation are discussed, along with increases in action potential frequency and changes in the parameters of the locomotor rhythm

    The Effects of Serotonin on Functionally Diverse Isolated Lamprey Spinal Cord Neurons

    Get PDF
    The experiments reported here showed that application of serotonin (5-hydroxytryptamine, 5-HT) (100 µ M) did not induce any significant current through the membranes of any of the spinal neurons studied (n = 62). At the same time, the membranes of most motoneurons and interneurons (15 of 18) underwent slight depolarization (2–6 mV) in the presence of 5-HT, which was not accompanied by any change in the input resistance of the cells. Depolarization to 10–20 mV occurred in some cells (3 of 18) of these functional groups, this being accompanied by 20–60% decreases in input resistance. The same concentration of 5-HT induced transient low-amplitude depolarization of most sensory spinal neurons (dorsal sensory cells), this changing smoothly to long-term hyperpolarization by 2–7 mV. The input resistance of the cell membranes in these cases showed no significant change (n = 8). Data were obtained which provided a better understanding of the mechanism by which 5-HT modulates the activity of spinal neurons. Thus, 5-HT facilitates chemoreceptive currents induced by application of NMDA to motoneurons and interneurons, while the NMDA responses of dorsal sensory cells were decreased by 5-HT. 5-HT affected the post-spike afterresponses of neurons. 5-HT significantly decreased the amplitude of afterhyperpolarization arising at the end of the descending phase of action potentials in motoneurons and interneurons and increased the amplitude of afterdepolarization in these types of cells. In sensory spinal neurons, 5-HT had no great effect on post-spike afterresponses. The results obtained here support the suggestion that 5-HT significantly modulates the activity of spinal neurons of different functional types. 5-HT facilitates excitation induced by subthreshold depolarization in motoneurons and some interneurons, facilitating the generation of rhythmic discharges by decreasing afterhyperpolarization. In sensory cells, 5-HT enhances inhibition due to hyperpolarization, suppressing NMDA currents. The differences in the effects of 5-HT on functionally diverse neurons are presumed to be associated with the combination of different types of 5-HT receptors on the membranes of these types of spinal neurons

    Will the Last Archivist in Seattle Please Turn Out the Lights: Value and the National Archives

    Get PDF
    With the abrupt announcement in late January 2020 that the National Archives at Seattle–placed on 10 acres in the Sand Point neighborhood since 1963–would be eventually closed and the records moved to facilities in Riverside, California and Kansas City, Missouri, the surprised dismay from state archivists, researchers, and Native American tribal leaders and Alaska Natives who see their ancestors and heritage directly depicted in the records was quick and loud. The facility holds one million cubic feet of federal records which are accessed by over 700 people visiting its research rooms, and which grow by about 1300 cubic feet annually. In this examination of the National Archives at Seattle\u27s collections use–integrating staff perspectives with data from recent reports, budgets, and the accounting framework that informed the decision–we contribute an analysis of the digitization work proposed to replace in-person viewership, and an Indigenous and land-development view on the archival value assessments within the decision

    EPR identification of defects responsible for thermoluminescence in Cu-doped lithium tetraborate (Li2B4O7) crystals

    Get PDF
    Electron paramagnetic resonance (EPR) is used to identify the electron and hole traps responsible for thermoluminescence (TL) peaks occurring near 100 and 200 ◦C in copper-doped lithium tetraborate (Li2B4O7) crystals. As-grown crystals have Cu+ and Cu2+ ions substituting for lithium and have Cu+ ions at interstitial sites. All of the substitutional Cu2+ ions in the as-grown crystals have an adjacent lithium vacancy and give rise to a distinct EPR spectrum. Exposure to ionizing radiation at room temperature produces a second and different Cu2+ EPR spectrum when a hole is trapped by substitutional Cu+ ions that have no nearby defects. These two Cu2+ trapped-hole centers are referred to as Cu2+-VLi and Cu2+active, respectively. Also during the irradiation, two trapped-electron centers in the form of interstitial Cu0 atoms are produced when interstitial Cu+ ions trap electrons. They are observed with EPR and are labeled Cu0A and Cu0B. When an irradiated crystal is warmed from 25 to 150 ◦C, the Cu2+active centers have a partial decay step that correlates with the TL peak near 100 ◦C. The concentrations of Cu0A and Cu0B centers, however, increase as the crystal is heated through this range. As the crystal is futher warmed between 150 and 250 ◦C, the EPR signals from the Cu2+active hole centers and Cu0A and Cu0B electron centers decay simultaneously. This decay step correlates with the intense TL peak near 200 ◦C

    Power-law random walks

    Full text link
    We present some new results about the distribution of a random walk whose independent steps follow a qq-Gaussian distribution with exponent 11q;qR\frac{1}{1-q}; q \in \mathbb{R}. In the case q>1q>1 we show that a stochastic representation of the point reached after nn steps of the walk can be expressed explicitly for all nn. In the case q<1,q<1, we show that the random walk can be interpreted as a projection of an isotropic random walk, i.e. a random walk with fixed length steps and uniformly distributed directions.Comment: 5 pages, 4 figure

    Magnetic Vortex Resonance in Patterned Ferromagnetic Dots

    Full text link
    We report a high-resolution experimental detection of the resonant behavior of magnetic vortices confined in small disk-shaped ferromagnetic dots. The samples are magnetically soft Fe-Ni disks of diameter 1.1 and 2.2 um, and thickness 20 and 40 nm patterned via electron beam lithography onto microwave co-planar waveguides. The vortex excitation spectra were probed by a vector network analyzer operating in reflection mode, which records the derivative of the real and the imaginary impedance as a function of frequency. The spectra show well-defined resonance peaks in magnetic fields smaller than the characteristic vortex annihilation field. Resonances at 162 and 272 MHz were detected for 2.2 and 1.1 um disks with thickness 40 nm, respectively. A resonance peak at 83 MHz was detected for 20-nm thick, 2-um diameter disks. The resonance frequencies exhibit weak field dependence, and scale as a function of the dot geometrical aspect ratio. The measured frequencies are well described by micromagnetic and analytical calculations that rely only on known properties of the dots (such as the dot diameter, thickness, saturation magnetization, and exchange stiffness constant) without any adjustable parameters. We find that the observed resonance originates from the translational motion of the magnetic vortex core.Comment: submitted to PRB, 17 pages, 5 Fig

    A statistical mechanics description of environmental variability in metabolic networks

    Get PDF
    Many of the chemical reactions that take place within a living cell are irreversible. Due to evolutionary pressures, the number of allowable reactions within these systems are highly constrained and thus the resulting metabolic networks display considerable asymmetry. In this paper, we explore possible evolutionary factors pertaining to the reduced symmetry observed in these networks, and demonstrate the important role environmental variability plays in shaping their structural organization. Interpreting the returnability index as an equilibrium constant for a reaction network in equilibrium with a hypothetical reference system, enables us to quantify the extent to which a metabolic network is in disequilibrium. Further, by introducing a new directed centrality measure via an extension of the subgraph centrality metric to directed networks, we are able to characterise individual metabolites by their participation within metabolic pathways. To demonstrate these ideas, we study 116 metabolic networks of bacteria. In particular, we find that the equilibrium constant for the metabolic networks decreases significantly in-line with variability in bacterial habitats, supporting the view that environmental variability promotes disequilibrium within these biochemical reaction system

    Morphological Observations of Mineralizing Pericardium Cardiac Grafts

    Get PDF
    Pericardial patch grafters were implanted in the hearts of young sheep for periods ranging from two to 120 days. Explants seven to 21 days old revealed the formation of a pseudoneointima (PNI) on the blood contacting surface of the pericardium. The PNI was more heavily mineralized than the pericardium. Mineralization was most intense on the blood contacting surface of the PNI and on the chamber surface of the pericardium. After three weeks of implantation, the PNI was much thinner and was organized into a thin fibrous capsule without any signs of mineralization. In the pericardium, mineral deposits were seen in fibroblasts. Moreover, cell-related mineralization was evident prior to calcification of the surrounding collagen matri
    corecore