72 research outputs found

    Inverse Cotton-Mouton effect of the Vacuum and of atomic systems

    Full text link
    In this letter we calculate the Inverse Cotton-Mouton Effect (ICME) for the vacuum following the predictions of Quantum ElectroDynamics. We compare the value of this effect for the vacuum with the one expected for atomic systems. We finally show that ICME could be measured for the first time for noble gases using state-of-the-art laser systems and for the quantum vacuum with near-future laser facilities like ELI and HiPER, providing in particular a test of the nonlinear behaviour of quantum vacuum at intensities below the Schwinger limit of 4.5x10^33 W/m^2.Comment: Submitted to EP

    New bounds on millicharged particles from cosmology

    Get PDF
    Particles with millicharge q and sub-eV mass can be produced in photon-photon collisions, distorting the energy spectrum of the Cosmic Microwave Background. We derive the conservative bound q < 10^-7 e (as well as model-dependent bounds two orders of magnitude stronger), incompatible with proposed interpretations of the PVLAS anomaly based on millicharged production or on millicharged-mediated axion-like couplings.Comment: 7 pages, 2 figures. Final versio

    Furin, a transcriptional target of NKX2-5, has an essential role in heart development and function

    Get PDF
    The homeodomain transcription factor NKX2-5 is known to be essential for both normal heart development and for heart function. But little is yet known about the identities of its downstream effectors or their function during differentiation of cardiac progenitor cells (CPCs). We have used transgenic analysis and CRISPR-mediated ablation to identify a cardiac enhancer of the Furin gene. The Furin gene, encoding a proprotein convertase, is directly repressed by NKX2-5. Deletion of Furin in CPCs is embryonic lethal, with mutant hearts showing a range of abnormalities in the outflow tract. Those defects are associated with a reduction in proliferation and premature differentiation of the CPCs. Deletion of Furin in differentiated cardiomyocytes results in viable adult mutant mice showing an elongation of the PR interval, a phenotype that is consistent with the phenotype of mice and human mutant for Nkx2-5. Our results show that Furin mediate some aspects of Nkx2-5 function in the heart

    Zemach and magnetic radius of the proton from the hyperfine splitting in hydrogen

    Full text link
    The current status of the determination of corrections to the hyperfine splitting of the ground state in hydrogen is considered. Improved calculations are provided taking into account the most recent value for the proton charge radius. Comparing experimental data with predictions for the hyperfine splitting, the Zemach radius of the proton is deduced to be 1.045(16)1.045(16) fm. Employing exponential parametrizations for the electromagnetic form factors we determine the magnetic radius of the proton to be 0.778(29)0.778(29) fm. Both values are compared with the corresponding ones derived from the data obtained in electron-proton scattering experiments and the data extracted from a rescaled difference between the hyperfine splittings in hydrogen and muonium

    Birefringence of interferential mirrors at normal incidence Experimental and computational study

    Full text link
    In this paper we present a review of the existing data on interferential mirror birefringence. We also report new measurements of two sets of mirrors that confirm that mirror phase retardation per reflection decreases when mirror reflectivity increases. We finally developed a computational code to calculate the expected phase retardation per reflection as a function of the total number of layers constituting the mirror. Different cases have been studied and we have compared computational results with the trend of the experimental data. Our study indicates that the origin of the mirror intrinsic birefringence can be ascribed to the reflecting layers close to the substrate.Comment: To be published in Applied Physics

    Searching for energetic cosmic axions in a laboratory experiment: testing the PVLAS anomaly

    Full text link
    Astrophysical sources of energetic gamma rays provide the right conditions for maximal mixing between (pseudo)scalar (axion-like) particles and photons if their coupling is as strong as suggested by the PVLAS claim. This is independent of whether or not the axion interaction is standard at all energies or becomes supressed in the extreme conditions of the stellar interior. The flux of such particles through the Earth could be observed using a metre long, Tesla strength superconducting solenoid thus testing the axion interpretation of the PVLAS anomaly. The rate of events in CAST caused by axions from the Crab pulsar is also estimated for the PVLAS-favoured parameters.Comment: 5 pages, 3 figur

    Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen

    Full text link
    While measurements of the hyperfine structure of hydrogen-like atoms are traditionally regarded as test of bound-state QED, we assume that theoretical QED predictions are accurate and discuss the information about the electromagnetic structure of protons that could be extracted from the experimental values of the ground state hyperfine splitting in hydrogen and muonic hydrogen. Using recent theoretical results on the proton polarizability effects and the experimental hydrogen hyperfine splitting we obtain for the Zemach radius of the proton the value 1.040(16) fm. We compare it to the various theoretical estimates the uncertainty of which is shown to be larger that 0.016 fm. This point of view gives quite convincing arguments in support of projects to measure the hyperfine splitting of muonic hydrogen.Comment: Submitted to Phys. Rev.
    • …
    corecore