393 research outputs found

    A review of residual stress analysis using thermoelastic techniques

    No full text
    Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis that is based on infra-red thermography. The technique has proved to be extremely effective for studying elastic stress fields and is now well established. It is based on the measurement of the temperature change that occurs as a result of a stress change. As residual stress is essentially a mean stress it is accepted that the linear form of the TSA relationship cannot be used to evaluate residual stresses. However, there are situations where this linear relationship is not valid or departures in material properties due to manufacturing procedures have enabled evaluations of residual stresses. The purpose of this paper is to review the current status of using a TSA based approach for the evaluation of residual stresses and to provide some examples of where promising results have been obtained

    Photoassociative creation of ultracold heteronuclear 6Li40K* molecules

    Full text link
    We investigate the formation of weakly bound, electronically excited, heteronuclear 6Li40K* molecules by single-photon photoassociation in a magneto-optical trap. We performed trap loss spectroscopy within a range of 325 GHz below the Li(2S_(1/2))+K(4P_(3/2)) and Li(2S_(1/2))+K(4P_(1/2)) asymptotic states and observed more than 60 resonances, which we identify as rovibrational levels of 7 of 8 attractive long-range molecular potentials. The long-range dispersion coefficients and rotational constants are derived. We find large molecule formation rates of up to ~3.5x10^7s^(-1), which are shown to be comparable to those for homonuclear 40K_2*. Using a theoretical model we infer decay rates to the deeply bound electronic ground-state vibrational level X^1\Sigma^+(v'=3) of ~5x10^4s^(-1). Our results pave the way for the production of ultracold bosonic ground-state 6Li40K molecules which exhibit a large intrinsic permanent electric dipole moment.Comment: 6 pages, 4 figures, submitted to EP

    Study of coupled states for the (4s^{2})^{1}S + (4s4p)^{3}P asymptote of Ca_{2}

    Full text link
    The coupled states A^{1}\Sigma_{u}^{+} (^{1}D +}1}S), c^{3}\Pi_{u} (^{3}P + ^{1}S) and a^{3}\Sigma_{u}^{+} (^{3}P +}1}S) of the calcium dimer are investigated in a laser induced fluorescence experiment combined with high-resolution Fourier-transform spectroscopy. A global deperturbation analysis of the observed levels, considering a model, which is complete within the subspace of relevant neighboring states, is performed using the Fourier Grid Hamiltonian method. We determine the potential energy curve of the A^{1}\Sigma_{u}^{+} and c^{3}\Pi_{u} states and the strengths of the couplings between them. The c^{3}\Pi_{u} and \as states are of particular importance for the description of collisional processes between calcium atoms in the ground state ^{1}S_{0} and excited state ^{3}P_{1} applied in studies for establishing an optical frequency standard with Ca.Comment: 15 pages, 12 figure

    Model for the hyperfine structure of electronically-excited KCs{\rm KCs} molecules

    Full text link
    A model for determining the hyperfine structure of the excited electronic states of diatomic bialkali heteronuclear molecules is formulated from the atomic hyperfine interactions, and is applied to the case of bosonic 39^{39}KCs and fermionic 40^{40}KCs molecules. The hyperfine structure of the potential energy curves of the states correlated to the K(4s\,^2S_{1/2})+Cs(6p\,^2P_{1/2,3/2}) dissociation limits is described in terms of different coupling schemes depending on the internuclear distance RR. These results provide the first step in the calculation of the hyperfine structure of rovibrational levels of these excited molecular states in the perspective of the identification of efficient paths for creating ultracold ground-state KCs molecules.Comment: 12 pages, 15 figure

    Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    Full text link
    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of RAIRS and temperature-programmed desorption spectra of O2 and O3 produced via two pathways: O + O and O2 + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O2 + O reactions is 150 K/kb. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley Rideal nor the Hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O3 formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO2 and H2O in the ices.Comment: 28 pages, 14 figure

    Potential energy and dipole moment surfaces of H3- molecule

    Get PDF
    A new potential energy surface for the electronic ground state of the simplest triatomic anion H3- is determined for a large number of geometries. Its accuracy is improved at short and large distances compared to previous studies. The permanent dipole moment surface of the state is also computed for the first time. Nine vibrational levels of H3- and fourteen levels of D3- are obtained, bound by at most ~70 cm^{-1} and ~ 126 cm^{-1} respectively. These results should guide the spectroscopic search of the H3- ion in cold gases (below 100K) of molecular hydrogen in the presence of H3- ions

    Influence of a Feshbach resonance on the photoassociation of LiCs

    Full text link
    We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational ground state through photoassociation into the B1Pi state, which has recently been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)]. Absolute rate constants for photoassociation at large detunings from the atomic asymptote are determined and are found to be surprisingly large. The photoassociation process is modeled using a full coupled-channel calculation for the continuum state, taking all relevant hyperfine states into account. The enhancement of the photoassociation rate is found to be caused by an `echo' of the triplet component in the singlet component of the scattering wave function at the inner turning point of the lowest triplet a3Sigma+ potential. This perturbation can be ascribed to the existence of a broad Feshbach resonance at low scattering energies. Our results elucidate the important role of couplings in the scattering wave function for the formation of deeply bound ground state molecules via photoassociation.Comment: Added Erratum, 20 pages, 9 figure

    Strain monitoring of tapestries: results of a three-year research project

    Get PDF
    The outcomes of an interdisciplinary research project between conservators and engineers investigating the strain experienced by different areas of a tapestry are described. Two techniques were used: full-field monitoring using digital image correlation (DIC) and point measurements using optical fibre sensors. Results showed that it is possible to quantify the global strain across a discrete area of a tapestry using DIC; optical fibre and other sensors were used to validate the DIC. Strain maps created by the DIC depict areas of high and low strain and can be overlaid on images of the tapestry, creating a useful visual tool for conservators, custodians and the general public. DIC identifies areas of high strain not obvious to the naked eye. The equipment can be used in situ in a historic house. In addition the work demonstrated the close relationship between relative humidity and strain
    corecore