33 research outputs found
Agronomic performance of annual self-reseeding legumes and their self-establishment potential in the Apulia region of Italy
Abstract The agronomic performance, biological nitrogen fixation (BNF
Evaluating the highest temperature extremes in the antarctic
The record high temperature for regions south of 60°S latitude is a balmy 19.8°C (67.6°F), recorded 30 January 1982 at a research station on Signy Island
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
In every Intergovernmental Panel on Climate Change (IPCC) Assessment cycle, a multitude of scenarios are assessed, with different scope and emphasis throughout the various Working Group reports and special reports, as well as their respective chapters. Within the reports, the ambition is to integrate knowledge on possible climate futures across the Working Groups and scientific research domains based on a small set of “framing pathways” such as the so-called representative concentration pathways (RCPs) in the Fifth IPCC Assessment Report (AR5) and the shared socioeconomic pathway (SSP) scenarios in the Sixth Assessment Report (AR6). This perspective, initiated by discussions at the IPCC Bangkok workshop in April 2023 on the “Use of Scenarios in AR6 and Subsequent Assessments”, is intended to serve as one of the community contributions to highlight the needs for the next generation of framing pathways that is being advanced under the Coupled Model Intercomparison Project (CMIP) umbrella, which will influence or even predicate the IPCC AR7 consideration of framing pathways. Here we suggest several policy research objectives that such a set of framing pathways should ideally fulfil, including mitigation needs for meeting the Paris Agreement objectives, the risks associated with carbon removal strategies, the consequences of delay in enacting that mitigation, guidance for adaptation needs, loss and damage, and for achieving mitigation in the wider context of societal development goals. Based on this context, we suggest that the next generation of climate scenarios for Earth system models should evolve towards representative emission pathways (REPs) and suggest key categories for such pathways. These framing pathways should address the most critical mitigation policy and adaptation plans that need to be implemented over the next 10 years. In our view, the most important categories are those relevant in the context of the Paris Agreement long-term goal, specifically an immediate action (low overshoot) 1.5 °C pathway and a delayed action (high overshoot) 1.5 °C pathway. Two other key categories are a pathway category approximately in line with current (as expressed by 2023) near- and long-term policy objectives, as well as a higher-emission category that is approximately in line with “current policies” (as expressed by 2023). We also argue for the scientific and policy relevance in exploring two “worlds that could have been”. One of these categories has high-emission trajectories well above what is implied by current policies and the other has very-low-emission trajectories which assume that global mitigation action in line with limiting warming to 1.5 °C without overshoot had begun in 2015. Finally, we note that the timely provision of new scientific information on pathways is critical to inform the development and implementation of climate policy. Under the Paris Agreement, for the second global stocktake, which will occur in 2028, and to inform subsequent development of nationally determined contributions (NDCs) up to 2040, scientific inputs are required by 2027. These needs should be carefully considered in the development timeline of community modelling activities, including those under CMIP7
A perspective on the next generation of Earth system model scenarios: towards representative emission pathways (REPs)
In every Intergovernmental Panel on Climate Change (IPCC) Assessment cycle, a multitude of scenarios are assessed, with different scope and emphasis throughout the various Working Group reports and special reports, as well as their respective chapters. Within the reports, the ambition is to integrate knowledge on possible climate futures across the Working Groups and scientific research domains based on a small set of “framing pathways” such as the so-called representative concentration pathways (RCPs) in the Fifth IPCC Assessment Report (AR5) and the shared socioeconomic pathway (SSP) scenarios in the Sixth Assessment Report (AR6). This perspective, initiated by discussions at the IPCC Bangkok workshop in April 2023 on the “Use of Scenarios in AR6 and Subsequent Assessments”, is intended to serve as one of the community contributions to highlight the needs for the next generation of framing pathways that is being advanced under the Coupled Model Intercomparison Project (CMIP) umbrella, which will influence or even predicate the IPCC AR7 consideration of framing pathways. Here we suggest several policy research objectives that such a set of framing pathways should ideally fulfil, including mitigation needs for meeting the Paris Agreement objectives, the risks associated with carbon removal strategies, the consequences of delay in enacting that mitigation, guidance for adaptation needs, loss and damage, and for achieving mitigation in the wider context of societal development goals. Based on this context, we suggest that the next generation of climate scenarios for Earth system models should evolve towards representative emission pathways (REPs) and suggest key categories for such pathways. These framing pathways should address the most critical mitigation policy and adaptation plans that need to be implemented over the next 10 years. In our view, the most important categories are those relevant in the context of the Paris Agreement long-term goal, specifically an immediate action (low overshoot) 1.5 °C pathway and a delayed action (high overshoot) 1.5 °C pathway. Two other key categories are a pathway category approximately in line with current (as expressed by 2023) near- and long-term policy objectives, as well as a higher-emission category that is approximately in line with “current policies” (as expressed by 2023). We also argue for the scientific and policy relevance in exploring two “worlds that could have been”. One of these categories has high-emission trajectories well above what is implied by current policies and the other has very-low-emission trajectories which assume that global mitigation action in line with limiting warming to 1.5 °C without overshoot had begun in 2015. Finally, we note that the timely provision of new scientific information on pathways is critical to inform the development and implementation of climate policy. Under the Paris Agreement, for the second global stocktake, which will occur in 2028, and to inform subsequent development of nationally determined contributions (NDCs) up to 2040, scientific inputs are required by 2027. These needs should be carefully considered in the development timeline of community modelling activities, including those under CMIP7.</p
Atmospheric rivers and associated extreme rainfall over Morocco
Atmospheric rivers (ARs) are long, narrow, and transient corridors of enhanced water vapour content in the lower troposphere, associated with strong low-level winds. These features play a key role in the global water cycle and drive weather extremes in many parts of the world. Here, we assessed the frequency and general characteristics of landfalling ARs over Morocco for the period 1979–2020. We used ECMWF ERA5 reanalysis data to detect and track landfalling ARs and then assessed AR association with rainfall at the annual and seasonal scales, as well as extreme rainfall events (defined as a daily precipitation amount exceeding the 99th percentile threshold of the wet days) at 30 gauging stations located across Morocco. Results indicate that about 36 ARs/year make landfall in Morocco. AR occurrence varies spatially and seasonally with highest occurrences in the autumn (SON) and Winter (DJF) in the northern part of the country and along the Atlantic across northern regions. AR rainfall climatology indicates up to 180 mm/year recorded in stations located in the north west. High fractional contributions (~28%) are recorded in the north and the Atlantic regions, with the driest regions of the south receiving about a third of their annual rainfall from ARs. For extreme rainfall, the highest AR contributions can attain over 50% in the southern dry regions and along the Atlantic north coast and Atlas highlands
Spatio- temporal variability of vegetation cover over Morocco (1982-2008) : linkages with large scale climate and predictability
The dominant patterns of vegetation cover interannual variability over Morocco are isolated using rotated extended empirical orthogonal functions applied to AVHRR NDVI data (1982-2008). The three leading modes capture the NDVI signal at the vegetation peak for three distinct locations: mode 1 (18.7% of total variance) is located along the Atlantic coastline, mode 2 (13.1%) is southwest of the Riff Mountain whilst mode 3 (11.2%) is along the Mediterranean coastline. Correlations between the NDVI time coefficients for the modes Atlantic' and Mediterranean' dominated by annuals and precipitation amount during the early stage of the vegetation cycle (NDJ) are found. Significant fluctuations of NDVI time coefficients are isolated: a quasi-biennial signal is present in the three modes and an additional quasi-quadriennial (approximate to 4.4 years) signal is identified for the Atlantic' mode only. Connection between vegetation activity and atmospheric and oceanic climate signals are sought using time-lag correlation analyses. The NAO during fall-beginning of winter (NDJ) is found to impact vegetation peak for the Atlantic' mode while the Scandinavian Pattern is related to NDVI peak over the Atlantic' and Riff' latter in the season (DJF). A significant connection is also found between vegetation over the Atlantic' mode and the Riff' and the Atlantic Nino' mode leading the SST variability in the equatorial Atlantic with a 6-months lag. Finally, linkages between NDVI and climate information are used to build a seasonal prediction model for NDVI using multiple linear regression. The NDVI anomalies during March-April may be predicted with a reasonable accuracy from January with 79% of explained variance, 60% and 72% for the Atlantic', the Riff' and the Mediterranean' regions, respectively. Results have (1) direct impacts for a better understanding of the role of large-scale climate signals on vegetation cover over Morocco and (2) contribute to the implementation of an agricultural early warning system
