110 research outputs found

    Multi-Bunch Instability Diagnostics via Digital Feedback Systems

    Get PDF
    Longitudinal feedback systems based on a common programmable DSP architecture have been commissioned at 4 laboratories. In addition to longitudinal feedback and beam diagnostics these exible systems have been programmed to provide diagnostics for tranverse motion. The diagnostic functions are based on transient domain techniques which record the response of every bunch while the feedback system manipulates the beam. Operational experience from 4 installations is illustrated via experimental results from PEP-II, DA NE, ALS and SPEAR. Modal growth and damping rates for transverse and longitudinal planes are measured via short (20 ms) transient excitations for unstable and stable coupled-bunch modes. Data from steady-state measurements are used to identify unstable modes, noise-driven beam motion, and noise sources. Techniques are illustrated which allow the prediction of instability thresholds from low-current measurements of stable beams. Tranverse bunch train grow-damp sequences which measure the time evolution of instabilities along the bunch train are presented and compared to signatures expected from ion and fast ion instabilities. Invited talk presented at the IEEE Particle Accelerator Conference (PAC99

    Multi-Bunch Longitudinal Dynamics and Diagnostics via a Digital

    Get PDF
    A bunch-by-bunch longitudinal feedback system based on a programmable DSP architecture is used to study coupled-bunch motion and its sources. Experimental results are presented from PEP-II, DA NE, ALS and SPEAR to highlight the operational experience from 4 installations, plus show novel accelerator diagnostics possible with the digital processing system. Modal growth and damping rates are measured via short ( 20 ms) transient recordings for unstable and stable coupled-bunch modes. Data from steady-state measurements are used to identify unstable modes and noise-driven beam motion. Anovel impedance measurement technique is presented which reveals the longitudinal impedance as a function of frequency. This technique uses the measured synchronous phase and charge of every bucket to calculate the impedance seen by the beam at revolution harmonics

    The PLASMONX Project for advanced beam physics experiments

    Get PDF
    The Project PLASMONX is well progressing into its design phase and has entered as well its second phase of procurements for main components. The project foresees the installation at LNF of a Ti:Sa laser system (peak power > 170 TW), synchronized to the high brightness electron beam produced by the SPARC photo-injector. The advancement of the procurement of such a laser system is reported, as well as the construction plans of a new building at LNF to host a dedicated laboratory for high intensity photon beam experiments (High Intensity Laser Laboratory). Several experiments are foreseen using this complex facility, mainly in the high gradient plasma acceleration field and in the field of mono- chromatic ultra-fast X-ray pulse generation via Thomson back-scattering. Detailed numerical simulations have been carried out to study the generation of tightly focused electron bunches to collide with laser pulses in the Thomson source: results on the emitted spectra of X-rays are presented

    Proposal for taking data with the KLOE-2 detector at the DAΦ\PhiNE collider upgraded in energy

    Get PDF
    This document reviews the physics program of the KLOE-2 detector at DAΦ\PhiNE upgraded in energy and provides a simple solution to run the collider above the ϕ\phi-peak (up to 2, possibly 2.5 GeV). It is shown how a precise measurement of the multihadronic cross section in the energy region up to 2 (possibly 2.5) GeV would have a major impact on the tests of the Standard Model through a precise determination of the anomalous magnetic moment of the muon and the effective fine-structure constant at the MZM_Z scale. With a luminosity of about 103210^{32}cm−2^{-2}s−1^{-1}, DAΦ\PhiNE upgraded in energy can perform a scan in the region from 1 to 2.5 GeV in one year by collecting an integrated luminosity of 20 pb−1^{-1} (corresponding to a few days of data taking) for single point, assuming an energy step of 25 MeV. A few years of data taking in this region would provide important tests of QCD and effective theories by γγ\gamma\gamma physics with open thresholds for pseudo-scalar (like the η′\eta'), scalar (f0,f0′f_0,f'_0, etc...) and axial-vector (a1a_1, etc...) mesons; vector-mesons spectroscopy and baryon form factors; tests of CVC and searches for exotics. In the final part of the document a technical solution for the energy upgrade of DAΦ\PhiNE is proposed.Comment: 19 pages, 8 figure

    High brightness electron beam emittance evolution measurements in an rf photoinjector

    Get PDF
    The new generation of linac injectors driving free electron lasers in the self-amplified stimulated emission (SASE-FEL) regime requires high brightness electron beams to generate radiation in the wavelength range from UV to x rays. The choice of the injector working point and its matching to the linac structure are the key factors to meet this requirement. An emittance compensation scheme presently applied in several photoinjectors worldwide is known as the "Ferrario" working point. In spite of its great importance there was, so far, no direct measurement of the beam parameters, such as emittance, transverse envelope, and energy spread, in the region downstream the rf gun and the solenoid of a photoinjector to validate the effectiveness of this approach. In order to fully characterize the beam dynamics with this scheme, an innovative beam diagnostic device, the emittance meter, consisting of a movable emittance measurement system, has been designed and built. With the emittance meter, measurements of the main beam parameters in both transverse phase spaces can be performed in a wide range of positions downstream the photoinjector. These measurements help in tuning the injector to optimize the working point and provide an important benchmark for the validation of simulation codes. We report the results of these measurements in the SPARC photoinjector and, in particular, the first experimental evidence of the double minimum in the emittance oscillation, which provides the optimized matching to the SPARC linac. © 2008 The American Physical Society
    • …
    corecore