2,124 research outputs found

    A computer program for the calculation of laminar and turbulent boundary layer flows

    Get PDF
    The results are presented of a study to produce a computer program to calculate laminar and turbulent boundary layer flows. The program is capable of calculating the following types of flow: (1) incompressible or compressible, (2) two dimensional or axisymmetric, and (3) flows with significant transverse curvature. Also, the program can handle a large variety of boundary conditions, such as blowing or suction, arbitrary temperature distributions and arbitrary wall heat fluxes. The program has been specialized to the calculation of equilibrium air flows and all of the thermodynamic and transport properties used are for air. For the turbulent transport properties, the eddy viscosity approach has been used. Although the eddy viscosity models are semi-empirical, the model employed in the program has corrections for pressure gradients, suction and blowing and compressibility. The basic method of approach is to put the equations of motion into a finite difference form and then solve them by use of a digital computer. The program is written in FORTRAN 4 and requires small amounts of computer time on most scientific machines. For example, most laminar flows can be calculated in less than one minute of machine time, while turbulent flows usually require three or four minutes

    Missing

    Get PDF
    N.A. Doss studied mathematics at UC Davis, CSUMB, and Washington State, and is now a faculty member at CSUMB. Aside from mathematics, Doss studies abstract art, poetry, baduk, and music

    Particle-in-cell simulation study of the scaling of asymmetric magnetic reconnection with in-plane flow shear

    Get PDF
    We investigate magnetic reconnection in systems simultaneously containing asymmetric (anti-parallel) magnetic fields, asymmetric plasma densities and temperatures, and arbitrary in-plane bulk flow of plasma in the upstream regions. Such configurations are common in the high-latitudes of Earth's magnetopause and in tokamaks. We investigate the convection speed of the X-line, the scaling of the reconnection rate, and the condition for which the flow suppresses reconnection as a function of upstream flow speeds. We use two-dimensional particle-in-cell simulations to capture the mixing of plasma in the outflow regions better than is possible in fluid modeling. We perform simulations with asymmetric magnetic fields, simulations with asymmetric densities, and simulations with magnetopause-like parameters where both are asymmetric. For flow speeds below the predicted cutoff velocity, we find good scaling agreement with the theory presented in Doss et al., J.~Geophys.~Res., 120, 7748 (2015). Applications to planetary magnetospheres, tokamaks, and the solar wind are discussed.Comment: 17 pages, 4 figures, submitted to Physics of Plasma

    Purification and characterization of extracellular amylolytic enzyme from Aspergillus species

    Get PDF
    In the present study, the amylase enzyme producing potential of four different Aspergillus species was analyzed. The extracted amylase enzyme was purified by diethyl amino ethyl (DEAE) cellulose and Sephadex G-50 column chromatography and the enzyme activity was measured by using synthetic substrate starch. The partially purified enzyme exhibits maximum activity at the optimum pH (7.0), temperature (60 to 70°C) and substrate concentration (1.5 to 2.0%) under standard assay conditions. Among the four different Aspergillus species examined, Aspergillus flavipes showed maximum production of amylase. The characteristics of the partially purified enzyme such as optimum pH and temperature were also favourable for industrial applications.Keywords: Aspergillus species, Sephadex G-50, column chromatography, diethyl amino ethyl (DEAE) cellulos

    Modified NASA-Lewis chemical equilibrium code for MHD applications

    Get PDF
    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view

    Public Utilities Commission

    Get PDF
    corecore