1,167 research outputs found

    PCB based Modulated Scatter with Enhanced Modulation Depth

    Get PDF
    The Modulated Scatterer Technique (MST) Has Shown Promise for Applications in Microwave Imaging, Electric Field Mapping, and Materials Characterization. Traditionally, MST Scatterers Are Dipoles Centrally Loaded with an Element Capable of Modulation (E.g., a PIN Diode). by Modulating the Load Element State, the Scattered Fields Are Also Modulated. However, Due to the Small Size of Such Scatterers, It Can Be Difficult to Reliably Detect the Response. Increasing the Modulation Depth (MD) of the Scattered Signal May Improve Detectability. This Paper Presents Simulations and Measurements of PCB-Based MST Elements that, through Reactive Loading, Are Designed to Be Electrically Invisible during the Reverse Bias State of the Modulated Element (A PIN Diode in This Case) While Producing Detectable Scattering during the Forward Bias State. the Results Show a Significant (\u3e 90%) Improvement in the MD of the Scattered Signal When Compared to a Traditional MST Scatterer

    Persistence of a pinch in a pipe

    Full text link
    The response of low-dimensional solid objects combines geometry and physics in unusual ways, exemplified in structures of great utility such as a thin-walled tube that is ubiquitous in nature and technology. Here we provide a particularly surprising consequence of this confluence of geometry and physics in tubular structures: the anomalously large persistence of a localized pinch in an elastic pipe whose effect decays very slowly as an oscillatory exponential with a persistence length that diverges as the thickness of the tube vanishes, which we confirm experimentally. The result is more a consequence of geometry than material properties, and is thus equally applicable to carbon nanotubes as it is to oil pipelines.Comment: 6 pages, 3 figure

    Water entry of a flat elastic plate at high horizontal speed

    Get PDF
    The two-dimensional problem of an elastic-plate impact onto an undisturbed surface of water of infinite depth is analysed. The plate is forced to move with a constant horizontal velocity component which is much larger than the vertical velocity component of penetration. The small angle of attack of the plate and its vertical velocity vary in time, and are determined as part of the solution, together with the elastic deflection of the plate and the hydrodynamic loads within the potential flow theory. The boundary conditions on the free surface and on the wetted part of the plate are linearized and imposed on the initial equilibrium position of the liquid surface. The wetted part of the plate depends on the plate motion and its elastic deflection. To determine the length of the wetted part we assume that the spray jet in front of the advancing plate is negligible. A smooth separation of the free-surface flow from the trailing edge is imposed. The wake behind the moving body is included in the model. The plate deflection is governed by Euler’s beam equation, subject to free–free boundary conditions. Four different regimes of plate motion are distinguished depending on the impact conditions: (a) the plate becomes fully wetted; (b) the leading edge of the plate touches the water surface and traps an air cavity; (c) the free surface at the forward contact point starts to separate from the plate; (d) the plate exits the water. We could not detect any impact conditions which lead to steady planing of the free plate after the impact. It is shown that a large part of the total energy in the fluid–plate interaction leaves the main bulk of the liquid with the spray jet. It is demonstrated that the flexibility of the plate may increase the hydrodynamic loads acting on it. The impact loads can cause large bending stresses, which may exceed the yield stress of the plate material. The elastic vibrations of the plate are shown to have a significant effect on the fluid flow in the wake

    Epistemic and social scripts in computer-supported collaborative learning

    Get PDF
    Collaborative learning in computer-supported learning environments typically means that learners work on tasks together, discussing their individual perspectives via text-based media or videoconferencing, and consequently acquire knowledge. Collaborative learning, however, is often sub-optimal with respect to how learners work on the concepts that are supposed to be learned and how learners interact with each other. One possibility to improve collaborative learning environments is to conceptualize epistemic scripts, which specify how learners work on a given task, and social scripts, which structure how learners interact with each other. In this contribution, two studies will be reported that investigated the effects of epistemic and social scripts in a text-based computer-supported learning environment and in a videoconferencing learning environment in order to foster the individual acquisition of knowledge. In each study the factors ‘epistemic script’ and ‘social script’ have been independently varied in a 2×2-factorial design. 182 university students of Educational Science participated in these two studies. Results of both studies show that social scripts can be substantially beneficial with respect to the individual acquisition of knowledge, whereas epistemic scripts apparently do not to lead to the expected effects

    HIV prevention trial design in an era of effective pre-exposure prophylaxis

    Get PDF
    Pre-exposure prophylaxis (PrEP) has demonstrated remarkable effectiveness protecting at-risk individuals from HIV-1 infection. Despite this record of effectiveness, concerns persist about the diminished protective effect observed in women compared with men and the influence of adherence and risk behaviors on effectiveness in targeted subpopulations. Furthermore, the high prophylactic efficacy of the first PrEP agent, tenofovir disoproxil fumarate/emtricitabine (TDF/FTC), presents challenges for demonstrating the efficacy of new candidates. Trials of new agents would typically require use of non-inferiority (NI) designs in which acceptable efficacy for an experimental agent is determined using pre-defined margins based on the efficacy of the proven active comparator (i.e. TDF/FTC) in placebo-controlled trials. Setting NI margins is a critical step in designing registrational studies. Under- or over-estimation of the margin can call into question the utility of the study in the registration package. The dependence on previous placebo-controlled trials introduces the same issues as external/historical controls. These issues will need to be addressed using trial design features such as re-estimated NI margins, enrichment strategies, run-in periods, crossover between study arms, and adaptive re-estimation of sample sizes. These measures and other innovations can help to ensure that new PrEP agents are made available to the public using stringent standards of evidence

    Detection of Surface Cracks in Metals using Microwave and Millimeter-Wave Nondestructive Testing Techniques-A Review

    Get PDF
    Integrity Assessment of Metallic Structures Requires Inspection Tools Capable of Detecting and Evaluating Cracks Reliably. to This End, Many Microwave and Millimeter-Wave Nondestructive Testing and Evaluation (NDT&E) Methods Have Been Developed and Applied Successfully in the Past. Detection of Fatigue Cracks with Widths Less Than 5 Μ M using Noncontact Microwave-Based Inspection Methods Was Demonstrated in the 1970s. Since their Introduction, These Methods Have Evolved Considerably Toward Enhancing the Detection Sensitivity and Resolution. Undertaking Key Application Challenges Has Attracted Considerable Attention in the Past Three Decades and Led to the Development of the Near-Field Techniques for Crack Detection. to Address a Need that Cannot Be Fulfilled by Other NDT&E Modalities, Innovative Noncontact Microwave and Millimeter-Wave NDT&E Methods Were Devised Recently to Detect Cracks of Arbitrary Orientations under Thick Dielectric Structures. While the Reported Methods Share the Same Underlying Physical Principles, They Vary Considerably in Terms of the Devised Probes/sensors and the Application Procedure. Consequently, their Sensitivity and Resolution as Well as their Limitations Vary. This Article Reviews the Various Crack Detection Methods Developed To-Date and Compares Them in Terms of Common Performance Metrics. This Comprehensive Review is Augmented with Experimental Comparisons and Benchmarking Aimed to Benefit NDT&E Practitioners and Researchers Alike

    New zebrafish models of neurodegeneration

    Get PDF
    In modern biomedicine, the increasing need to develop experimental models to further our understanding of disease conditions and delineate innovative treatments has found in the zebrafish (Danio rerio) an experimental model, and indeed a valuable asset, to close the gap between in vitro and in vivo assays. Translation of ideas at a faster pace is vital in the field of neurodegeneration, with the attempt to slow or prevent the dramatic impact on the society's welfare being an essential priority. Our research group has pioneered the use of zebrafish to contribute to the quest for faster and improved understanding and treatment of neurodegeneration in concert with, and inspired by, many others who have primed the study of the zebrafish to understand and search for a cure for disorders of the nervous system. Aware of the many advantages this vertebrate model holds, here, we present an update on the recent zebrafish models available to study neurodegeneration with the goal of stimulating further interest and increasing the number of diseases and applications for which they can be exploited. We shall do so by citing and commenting on recent breakthroughs made possible via zebrafish, highlighting their benefits for the testing of therapeutics and dissecting of disease mechanisms
    • 

    corecore