7 research outputs found

    VEGF, VEGFR-1 and VEGFR-2 immunoreactivity in the porcine arteries of vascular subovarian plexus (VSP) during the estrous cycle.

    Get PDF
    Abstract: Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the female reproductive tract. It binds to cell surface through ligand-stimulatable tyrosine kinase receptors, the most important being VEGFR-1 (flt-1) and VEGFR-2 (flk-1). The broad ligament of the uterus is a dynamic organ consisting of specialized complexes of blood vessels connected functionally to the uterus, oviduct and ovary. Endothelial cells form an inner coating of the vessel walls and thus they stay under the influence of various modulators circulating in blood including ovarian steriods involved in developmental changes in the female reproductive system. The aim of the present study was to immunolocalize VEGF and its two receptors: VEGFR-1 and VEGFR-2 in the broad ligament of the uterus in the area of vascular subovarian plexus during different phases of the estrous cycle in pig and to determine the correlation between immunoreactivity of the investigated factors and phases of the estrous cycle. The study was performed on cryostat sections of vascular subovarian plexus stained immunohistochemically by ABC method. Specific polyclonal antibodies: anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 were used. Data were subjected to one-way analysis of variance. Our study revealed the presence of VEGF and its receptors in endothelial and smooth muscle cells of VSP arteries. All agents displayed phase-related differences in immunoreactivity suggesting the modulatory effect of VEGF, VEGFR-1 and VEGFR-2 on the arteries of the VSP in the porcine broad ligament of the uterus

    Oviductal lymphatics and their relations with the paraovarian lymphatic plexus in the pig

    No full text
    The Iymphatic vessels emanating from the oviductal infundibulum, ampulla and isthmus were examined in the pig paraovarian sac and broad ligament walls to determine their relations with paraovarian lymphatic plexus. To differentiate the oviductal, ovarian and uterine lymphatic pathways injections of three-coloured microfil were used. The precollector lymphatics in the paraovarian sac mesosalpinx created two networks running independently pathways towards the lymph nodes. A large multimesh network from the oviductal isthmus, especially in the late follicular and early luteal phase, together with uterine precollectors made the limphatic plexusus in subovarian areas. Both of these lymphatics networks did not posses direct connections for the lymph flow. The lymphatic system in the supraovarian sac was not evident scant

    VEGF, VEGFR-1 and VEGFR-2 immunoreactivity in the porcine arteries of vascular subovarian plexus (VSP) during the estrous cycle.

    No full text
    Abstract: Vascular endothelial growth factor (VEGF) is an important angiogenic factor in the female reproductive tract. It binds to cell surface through ligand-stimulatable tyrosine kinase receptors, the most important being VEGFR-1 (flt-1) and VEGFR-2 (flk-1). The broad ligament of the uterus is a dynamic organ consisting of specialized complexes of blood vessels connected functionally to the uterus, oviduct and ovary. Endothelial cells form an inner coating of the vessel walls and thus they stay under the influence of various modulators circulating in blood including ovarian steriods involved in developmental changes in the female reproductive system. The aim of the present study was to immunolocalize VEGF and its two receptors: VEGFR-1 and VEGFR-2 in the broad ligament of the uterus in the area of vascular subovarian plexus during different phases of the estrous cycle in pig and to determine the correlation between immunoreactivity of the investigated factors and phases of the estrous cycle. The study was performed on cryostat sections of vascular subovarian plexus stained immunohistochemically by ABC method. Specific polyclonal antibodies: anti-VEGF, anti-VEGFR-1 and anti-VEGFR-2 were used. Data were subjected to one-way analysis of variance. Our study revealed the presence of VEGF and its receptors in endothelial and smooth muscle cells of VSP arteries. All agents displayed phase-related differences in immunoreactivity suggesting the modulatory effect of VEGF, VEGFR-1 and VEGFR-2 on the arteries of the VSP in the porcine broad ligament of the uterus
    corecore