3,643 research outputs found

    Marker identification and classification of cancer types using gene expression data and SIMCA

    Get PDF
    Objectives. High-throughput technologies are radically boosting the understanding of living systems, thus creating enormous opportunities to elucidate the biological processes of cells in different physiological states. In particular, the application of DNA microarrays to monitor expression profiles from tumor cells is improving cancer analysis to levels that classical methods have been unable to reach. However, molecular diagnostics based on expression profiling requires addressing computational issues as the overwhelming number of variables and the complex, multi-class nature of tumor samples. Thus, the objective of the present research has been the development of a computational procedure for feature extraction and classification of gene expression data.Methods. The Soft Independent Modeling of Class Analogy (SIMCA) approach has been implemented in a data mining scheme, which allows the identification of those genes that are most likely to confer robust and accurate classification of samples from multiple tumor types.Results: The proposed method has been tested on two different microarray data sets, namely Golub's analysis of acute human leukemia [1] and the small round blue cell tumors study presented by Khan et al. [2]. The identified features represent a rational and dimensionally reduced base for understanding the biology of diseases, defining targets of therapeutic intervention, and developing diagnostic tools for classification of pathological states.Conclusions: The analysis of the SIMCA model residuals allows the identification of specific phenotype markers. At the some time, the class analogy approach provides the assignment to multiple classes, such as different pathological conditions or tissue samples, for previously unseen instances

    Characterisation of AMS H35 HV-CMOS monolithic active pixel sensor prototypes for HEP applications

    Full text link
    Monolithic active pixel sensors produced in High Voltage CMOS (HV-CMOS) technology are being considered for High Energy Physics applications due to the ease of production and the reduced costs. Such technology is especially appealing when large areas to be covered and material budget are concerned. This is the case of the outermost pixel layers of the future ATLAS tracking detector for the HL-LHC. For experiments at hadron colliders, radiation hardness is a key requirement which is not fulfilled by standard CMOS sensor designs that collect charge by diffusion. This issue has been addressed by depleted active pixel sensors in which electronics are embedded into a large deep implantation ensuring uniform charge collection by drift. Very first small prototypes of hybrid depleted active pixel sensors have already shown a radiation hardness compatible with the ATLAS requirements. Nevertheless, to compete with the present hybrid solutions a further reduction in costs achievable by a fully monolithic design is desirable. The H35DEMO is a large electrode full reticle demonstrator chip produced in AMS 350 nm HV-CMOS technology by the collaboration of Karlsruher Institut f\"ur Technologie (KIT), Institut de F\'isica d'Altes Energies (IFAE), University of Liverpool and University of Geneva. It includes two large monolithic pixel matrices which can be operated standalone. One of these two matrices has been characterised at beam test before and after irradiation with protons and neutrons. Results demonstrated the feasibility of producing radiation hard large area fully monolithic pixel sensors in HV-CMOS technology. H35DEMO chips with a substrate resistivity of 200Ω\Omega cm irradiated with neutrons showed a radiation hardness up to a fluence of 101510^{15}neq_{eq}cm−2^{-2} with a hit efficiency of about 99% and a noise occupancy lower than 10−610^{-6} hits in a LHC bunch crossing of 25ns at 150V

    Radioisotopic purity and imaging properties of cyclotron-produced 99mTc using direct 100Mo(p,2n) reaction

    Get PDF
    Evaluation of the radioisotopic purity of technetium-99m (99mTc) produced in GBq amounts by proton bombardment of enriched molibdenum-100 (100Mo) metallic targets at low proton energies (i.e. within 15\u201320 MeV) is conducted. This energy range was chosen since it is easily achievable by many conventional medical cyclotrons already available in the nuclear medicine departments of hospitals. The main motivation for such a study is in the framework of the research activities at the international level that have been conducted over the last few years to develop alternative production routes for the most widespread radioisotope used in medical imaging. The analysis of technetium isotopes and isomeric states (9xTc) present in the pertechnetate saline Na99mTcO4 solutions, obtained after the extraction/purification procedure, reveals radionuclidic purity levels basically in compliance with the limits recently issued by European Pharmacopoeia 9.3 (2018 Sodium pertechnetate (99mTc) injection 4801\u20133). Moreover, the impact of 9xTc contaminant nuclides on the final image quality is thoroughly evaluated, analyzing the emitted high-energy gamma rays and their influence on the image quality. The spatial resolution of images from cyclotron-produced 99mTc acquired with a mini-gamma camera was determined and compared with that obtained using technetium-99m solutions eluted from standard 99Mo/99mTc generators. The effect of the increased image background contribution due to Compton-scattered higher-energy gamma rays (E \u3b3 \u2009\u2009>\u2009\u2009200\u2009keV), which could cause image-contrast deterioration, was also studied. It is concluded that, due to the high radionuclidic purity of cyclotron-produced 99mTc using 100Mo(p,2n)99mTc reaction at a proton beam energy in the range 15.7\u201319.4 MeV, the resulting image properties are well comparable with those from the generator-eluted 99mTc

    fluoroquinolone resistance and molecular characterization of gyra and parc quinolone resistance determining regions in escherichia coli isolated from poultry

    Get PDF
    Abstract Escherichia coli are a common inhabitant of the gastrointestinal tract of mammals and birds; nevertheless, they may be associated with a variety of severe and invasive infections. Whereas fluoroquinolones (FQ) have been banned in the United States for use in poultry production, the use of these antimicrobials in poultry husbandry is still possible in the European Union, although with some restrictions. The aim of this study was to investigate the FQ resistance of 235 E. coli isolates recovered from chickens and turkeys. Minimum inhibitory concentrations were determined by a microdilution method, whereas mutations in the quinolone resistance-determining regions of the target genes, gyrA and parC, were detected by a PCR-based method. High resistance rates (>60%) were observed for nalidixic acid, flumequine, and difloxacin, whereas resistance to ciprofloxacin, danofloxacin, enrofloxacin, marbofloxacin, and sarafloxacin was less frequently reported

    Management of severe head injury with brain exposure in three loggerhead sea turtles Caretta caretta

    Get PDF
    The loggerhead Caretta caretta is the most common sea turtle in the Mediterranean. Currently, sea turtles are considered endangered, mainly due to the impact of human activities. Among traumatic lesions, those involving the skull, if complicated by brain exposure, are often life-threatening. In these cases, death could be the outcome of direct trauma of the cerebral tissue or of secondary meningoencephalitis. This uncontrolled study aims to evaluate the use of a plantderived dressing (1 Primary Wound DressingÂź) in 3 sea turtles with severe lesions of the skull exposing the brain. Following surgical curettage, the treatment protocol involved exclusive use of the plant-derived dressing applied on the wound surface as the primary dressing, daily for the first month and then every other day until the end of treatment. The wound and peri-wound skin were covered with a simple secondary dressing without any active compound (non-woven gauze with petroleum jelly). Data presented herein show an excellent healing process in all 3 cases and no side effects due to contact of the medication with the cerebral tissue

    Role of the mucins in pathogenesis of COPD: implications for therapy.

    Full text link
    Introduction: Evidence accumulated in the last decade has started to reveal the enormous complexity in the expression, interactions and functions of the large number of different mucins present in the different compartments of the human lower airways. This occurs both in normal subjects and in COPD patients in different clinical phases and stages of severity.Areas covered: We review the known physiological mechanisms that regulate mucin production in human lower airways of normal subjects, the changes in mucin synthesis/secretion in COPD patients and the clinical efficacy of drugs that modulate mucin synthesis/secretion.Expert opinion: It is evident that the old simplistic concept that mucus hypersecretion in COPD patients is associated with negative clinical outcomes is not valid and that the therapeutic potential of 'mucolytic drugs' is under-appreciated due to the complexity of the associated molecular network(s). Likewise, our current knowledge of the effects of the drugs already available on the market that target mucin synthesis/secretion/structure in the lower airways is extremely limited and often indirect and more well-controlled clinical trials are needed in this area

    Severe Aortic Stenosis and Myocardial Function: Diagnostic and Prognostic Usefulness of Ultrasonic Integrated Backscatter Analysis

    Get PDF
    Background— The aim of this study was to assess the myocardial reflectivity pattern in severe aortic valve stenosis through the use of integrated backscatter (IBS) analysis. Patients with aortic stenosis (AS) were carefully selected in the Department of Cardiology. Methods and Results— Thirty-five subjects (AS: valve orifice ≀1 cm2; 12 female; mean age, 71.8±6.2 years) and 25 healthy subjects were studied. All subjects of the study had conventional 2D-Doppler echocardiography and IBS. Backscatter signal was sampled at the septum and posterior wall levels. Patients with AS were divided into 2 groups: 16 patients with initial signs of congestive heart failure and a depressed left ventricular systolic function (DSF) (ejection fraction [EF] range, 35% to 50%) and 19 asymptomatic patients with normal left ventricular systolic function (NSF) (EF >50%). Myocardial echo intensity (pericardium related) was significantly higher at the septum and posterior wall levels in DSF than in NSF and in control subjects. IBS variation, as an expression of variation of the signal, appeared to be significantly lower in AS with DSF than in NSF and in control subjects, at both the septum and posterior wall levels. Patients with DSF underwent aortic valve replacement, and, during surgical intervention, a septal myocardial biopsy was made for evaluation of myocardium/fibrosis ratio. Abnormally increased echo intensity was detected in left ventricular pressure overload by severe aortic stenosis and correlated with increase of myocardial collagen content (operating biopsy). Conclusions— One year after aortic valve replacement, we observed a significant reduction of left ventricular mass, and, only if pericardial indexed IBS value (reduction of interstitial fibrosis) decreased, it was possible to observe an improvement of EF and of IBS variation

    Myocardial ultrasonic tissue characterization in patients with thyroid dysfunction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Structural myocardial abnormalities have been extensively documented in hypothyroidism. Experimental studies in animal models have also shown involvement of thyroid hormones in gene expression of myocardial collagen. This study was planned to investigate the ability of ultrasonic tissue characterization, as evaluated by integrated backscatter (IBS), to early identify myocardial involvement in thyroid dysfunction.</p> <p>Patients and Methods</p> <p>We studied 15 patients with hyperthyroidism (HYPER), 8 patients with hypothyroidism (HYPO), 14 patients with subclinical hypothyroidism (SCH) and 19 normal (N) subjects, who had normal LV systolic function. After treatment, 10 HYPER, 6 HYPO, and 8 SCH patients were reevaluated. IBS images were obtained and analyzed in parasternal short axis (papillary muscle level) view, at left ventricular (LV) posterior wall. The following IBS variables were analyzed: 1) the corrected coefficient (CC) of IBS, obtained by dividing IBS intensity by IBS intensity measured in a rubber phantom, using the same equipment adjustments, at the same depth; 2) cardiac cyclic variation (CV) of IBS - peak-to-peak difference between maximal and minimal values of IBS during cardiac cycle; 3) cardiac cyclic variation index (CVI) of IBS - percentual relationship between the cyclic variation (CV) and the mean value of IBS intensity.</p> <p>Results</p> <p>CC of IBS was significantly larger (p < 0.05) in HYPER (1.57 ± 0.6) and HYPO (1.53 ± 0.3) as compared to SCH (1.32 ± 0.3) or N (1.15 ± 0.27). The CV (dB) (HYPO: 7.5 ± 2.4; SCH: 8.2 ± 3.1; HYPER: 8.2 ± 2.0) and the CVI (HYPO: 35.6 ± 19.7%; SCH: 34.7 ± 17.5%; HYPER: 37.8 ± 11.6%) were not significantly different in patients with thyroid dysfunction as compared to N (7.0 ± 2.0 and 44.5 ± 15.1%).</p> <p>Conclusions</p> <p>CC of IBS was able to differentiate cardiac involvement in patients with overt HYPO and HYPER who had normal LV systolic function. These early myocardial structural abnormalities were partially reversed by drug therapy in HYPER group. On the other hand, although mean IBS intensity tended to be slightly larger in patients with SCH as compared to N, this difference was not statistical significant.</p

    In vivo Diffusion Tensor Magnetic Resonance Tractography of the Sheep Brain : An Atlas of the Ovine White Matter Fiber Bundles

    Get PDF
    Diffusion Tensor Magnetic Resonance Imaging (DTI) allows to decode the mobility of water molecules in cerebral tissue, which is highly directional along myelinated fibers. By integrating the direction of highest water diffusion through the tissue, DTI Tractography enables a non-invasive dissection of brain fiber bundles. As such, this technique is a unique probe for in vivo characterization of white matter architecture. Unraveling the principal brain texture features of preclinical models that are advantageously exploited in experimental neuroscience is crucial to correctly evaluate investigational findings and to correlate them with real clinical scenarios. Although structurally similar to the human brain, the gyrencephalic ovine model has not yet been characterized by a systematic DTI study. Here we present the first in vivo sheep (ovis aries) tractography atlas, where the course of the main white matter fiber bundles of the ovine brain has been reconstructed. In the context of the EU's Horizon EDEN2020 project, in vivo brain MRI protocol for ovine animal models was optimized on a 1.5T scanner. High resolution conventional MRI scans and DTI sequences (b-value = 1,000 s/mm2, 15 directions) were acquired on ten anesthetized sheep o. aries, in order to define the diffusion features of normal adult ovine brain tissue. Topography of the ovine cortex was studied and DTI maps were derived, to perform DTI tractography reconstruction of the corticospinal tract, corpus callosum, fornix, visual pathway, and occipitofrontal fascicle, bilaterally for all the animals. Binary masks of the tracts were then coregistered and reported in the space of a standard stereotaxic ovine reference system, to demonstrate the consistency of the fiber bundles and the minimal inter-subject variability in a unique tractography atlas. Our results determine the feasibility of a protocol to perform in vivo DTI tractography of the sheep, providing a reliable reconstruction and 3D rendering of major ovine fiber tracts underlying different neurological functions. Estimation of fiber directions and interactions would lead to a more comprehensive understanding of the sheep's brain anatomy, potentially exploitable in preclinical experiments, thus representing a precious tool for veterinaries and researchers
    • 

    corecore