34 research outputs found

    Electrospray ionization deposition of ultrathin ionic liquid films:[C 8C1Im]Cl and [C8C1Im][Tf 2N] on Au(111)

    No full text
    \u3cp\u3eWe introduce a new method for preparing ultrathin ionic liquid (IL) films on surfaces by means of electrospray ionization deposition (ESID) under ultraclean and well-defined ultra-high-vacuum (UHV) conditions. In contrast to physical vapor deposition (PVD) of ILs under UHV, ESID even allows deposition of ILs, which are prone to thermal decomposition. As proof of concept, we first investigated ultrathin [C\u3csub\u3e8\u3c/sub\u3eC\u3csub\u3e1\u3c/sub\u3eIm][Tf\u3csub\u3e2\u3c/sub\u3eN] (=1-methyl-3-octyl imidazolium bis(trifluoromethyl)imide) films on Au(111) by angle-resolved X-ray photoelectron spectroscopy (ARXPS). Films obtained by ESID are found to be virtually identical to films grown by standard PVD. Thereafter, ESID of [C\u3csub\u3e8\u3c/sub\u3eC\u3csub\u3e1\u3c/sub\u3eIm]Cl on Au(111) was studied as a first example of an IL that cannot be prepared as ultrathin film otherwise. [C \u3csub\u3e8\u3c/sub\u3eC\u3csub\u3e1\u3c/sub\u3eIm]Cl forms a wetting layer with a checkerboard arrangement with the cationic imidazolium ring and the chloride anion adsorbed next to each other on the substrate and the alkyl chain pointing toward vacuum. This arrangement within the wetting layer is similar to that observed for [C\u3csub\u3e8\u3c/sub\u3eC\u3csub\u3e1\u3c/sub\u3eIm][Tf\u3csub\u3e2\u3c/sub\u3eN], albeit with a higher degree of order of the alkyl chains. Further deposition of [C\u3csub\u3e8\u3c/sub\u3eC \u3csub\u3e1\u3c/sub\u3eIm]Cl leads to a pronounced island growth on top of the wetting layer, which is independently confirmed by ARXPS and atomic force microscopy. This behavior contrasts the growth behavior found for [C\u3csub\u3e8\u3c/sub\u3eC \u3csub\u3e1\u3c/sub\u3eIm][Tf\u3csub\u3e2\u3c/sub\u3eN], where layer-by-layer growth on top of the wetting layer is observed. The dramatic difference between both ILs is attributed to differences in the cation-anion interactions and in the degree of order in the wetting layer of the two ILs.\u3c/p\u3

    Electrospray ionization deposition of ultrathin ionic liquid films: [C 8C1Im]Cl and [C8C1Im][Tf 2N] on Au(111)

    No full text
    We introduce a new method for preparing ultrathin ionic liquid (IL) films on surfaces by means of electrospray ionization deposition (ESID) under ultraclean and well-defined ultra-high-vacuum (UHV) conditions. In contrast to physical vapor deposition (PVD) of ILs under UHV, ESID even allows deposition of ILs, which are prone to thermal decomposition. As proof of concept, we first investigated ultrathin [C8C1Im][Tf2N] (=1-methyl-3-octyl imidazolium bis(trifluoromethyl)imide) films on Au(111) by angle-resolved X-ray photoelectron spectroscopy (ARXPS). Films obtained by ESID are found to be virtually identical to films grown by standard PVD. Thereafter, ESID of [C8C1Im]Cl on Au(111) was studied as a first example of an IL that cannot be prepared as ultrathin film otherwise. [C 8C1Im]Cl forms a wetting layer with a checkerboard arrangement with the cationic imidazolium ring and the chloride anion adsorbed next to each other on the substrate and the alkyl chain pointing toward vacuum. This arrangement within the wetting layer is similar to that observed for [C8C1Im][Tf2N], albeit with a higher degree of order of the alkyl chains. Further deposition of [C8C 1Im]Cl leads to a pronounced island growth on top of the wetting layer, which is independently confirmed by ARXPS and atomic force microscopy. This behavior contrasts the growth behavior found for [C8C 1Im][Tf2N], where layer-by-layer growth on top of the wetting layer is observed. The dramatic difference between both ILs is attributed to differences in the cation-anion interactions and in the degree of order in the wetting layer of the two ILs

    Interfacial Behavior of Thin Ionic Liquid Films on Mica

    No full text
    Ultrathin films of two imidazolium-based ionic liquids (ILs), [C 1C1Im][Tf2N] (=1-methyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and [C4C1Im][Tf 2N] (=1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) were deposited on mica surfaces by physical vapor deposition in ultrahigh vacuum. Using angle-resolved X-ray photoelectron spectroscopy (ARXPS), the initial wetting behavior, the growth characteristics, and the molecular arrangement of the ions at the interface were investigated. The measurements were performed on freshly air-cleaved mica surfaces with different carbon precoverages. ARXPS clearly reveals that the initial IL adsorption behavior strongly depends on the amount of preadsorbed carbon: On clean mica, 3D growth (complete dewetting) occurs, whereas on a fully carbon covered surface, initially a complete 2D wetting layer forms, followed by 3D growth. © 2013 American Chemical Society

    The Impact of Functionality and Porous System of Nanostructured Carriers Based on Metal–Organic Frameworks of UiO-66-Type on Catalytic Performance of Embedded Au Nanoparticles in Hydroamination Reaction

    No full text
    New methods for the preparation of metal–organic frameworks UiO-66 and NH2-UiO-66 with a hierarchical porous structure were developed using the MW-assisted technique under atmospheric pressure. The synthesized nanostructured meso-UiO-66 and meso-NH2-UiO-66 matrices were utilized as Au nanoparticle carriers. The resulting Au@meso-UiO-66 and Au@NH2-UiO-66 nanohybrids were studied in the reaction of phenylacetylene hydroamination with aniline into imine ([phenyl-(1-phenylethylydene)amine]) for the first time. Their catalytic behavior is significantly determined by a combination of factors, such as a small crystal size, micro–mesoporous structure, and functionality of the UiO-66 and NH2-UiO-66 carriers, as well as a high dispersion of embedded gold nanoparticles. The Au@meso-UiO-66 and Au@NH2-UiO-66 nanocatalysts demonstrate high activities (TOF), with conversion and selectivity values over 90. This excellent catalytic performance is comparable or even better than that demonstrated by heterogeneous systems based on conventional inorganic and inorganic supports known from the literature

    Modifying HKUST-1 Crystals for Selective Ethane Adsorption Using Ionic Liquids as Synthesis Media

    No full text
    Novel adsorbents for methane and ethane based on HKUST-1 metal-organic framework were synthesized by microwave (MW) assisted technique using ionic liquids (ILs) as synthesis media. It was found that the MW synthesis time remarkably impacts both the product yield and the physico-chemical characteristics of the produced HKUST-1 material. The crystalline phase purity, crystallite size/dispersion and textural properties of the synthesized HKUST-1 matrices determine their performance in methane and ethane adsorption. Therefore, the HKUST-1 material produced in MW fields for 3 min only shows the highest phase purity and the largest surface area (BET) and porosity, along with a rather small crystallite size (below ~300 nm), demonstrating high methane and ethane adsorption capacity in the pressure range 1–30 atm

    Modifying HKUST-1 Crystals for Selective Ethane Adsorption Using Ionic Liquids as Synthesis Media

    No full text
    Novel adsorbents for methane and ethane based on HKUST-1 metal-organic framework were synthesized by microwave (MW) assisted technique using ionic liquids (ILs) as synthesis media. It was found that the MW synthesis time remarkably impacts both the product yield and the physico-chemical characteristics of the produced HKUST-1 material. The crystalline phase purity, crystallite size/dispersion and textural properties of the synthesized HKUST-1 matrices determine their performance in methane and ethane adsorption. Therefore, the HKUST-1 material produced in MW fields for 3 min only shows the highest phase purity and the largest surface area (BET) and porosity, along with a rather small crystallite size (below ~300 nm), demonstrating high methane and ethane adsorption capacity in the pressure range 1–30 atm

    Quantitative aAdsorbate structure determination for quasicrystals using X-Ray standing waves

    Get PDF
    The quantitative structure determination of adsorbed species on quasicrystal surfaces has so far appeared to present insurmountable problems. The normal incidence standing x-ray wave field technique offers a simple solution, without extensive data sets or large computations. Its application to quasicrystals raises several conceptual difficulties that are related to the phase problem in x-ray diffraction. We demonstrate their solution for the case of Si atoms adsorbed on the decagonal Co-rich modification of the Al-Co-Ni quasicrystal to determine the local structure, comprising 6-atom clusters in particular hollow sites

    X-ray standing wave study of Si clusters on a decagonal Al-Co-Ni quasicrystal surface

    No full text
    Quantitative adsorption structure determinations on quasicrystals are scarce because most techniques for measuring surface structures are not well suited to the complex and infinite unit cells of quasicrystals. The normal incidence standing x-ray wave field technique presents a solution to these problems because it can be made inherently surface sensitive and does not involve extensive computational effort. We describe a method for applying this technique to adsorbates on quasicrystals, with specific application to a submonolayer of Si atoms on a decagonal Al-Co-Ni surface. We demonstrate the sensitivity of the technique to both adsorption site and geometry, leading to the conclusion that the Si atoms, which form six-atom pentagonal clusters, have an average height of 1.77 ± 0.05 Å above pentagonal hollow sites, with a significant height variation among the Si atoms in the cluster. In particular, the central Si atom sits more deeply than the five surrounding Si atoms, which are, on average, 2.7 Å away from the central Si atom. Although this study was performed on a decagonal quasicrystal that is periodic perpendicular to the surface, we describe how the technique can be applied to cases with no periodicity
    corecore