31 research outputs found

    Ubiquitin-Specific Protease 25 Functions in Endoplasmic Reticulum-Associated Degradation

    Get PDF
    Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome

    The UBA-UIM Domains of the USP25 Regulate the Enzyme Ubiquitination State and Modulate Substrate Recognition

    Get PDF
    USP25m is the muscle isoform of the deubiquitinating (DUB) enzyme USP25. Similarly to most DUBs, data on USP25 regulation and substrate recognition is scarce. In silico analysis predicted three ubiquitin binding domains (UBDs) at the N-terminus: one ubiquitin-associated domain (UBA) and two ubiquitin-interacting motifs (UIMs), whereas no clear structural homology at the extended C-terminal region outside the catalytic domains were detected. In order to asses the contribution of the UBDs and the C-terminus to the regulation of USP25m catalytic activity, ubiquitination state and substrate interaction, serial and combinatorial deletions were generated. Our results showed that USP25m catalytic activity did not strictly depend on the UBDs, but required a coiled-coil stretch between amino acids 679 to 769. USP25 oligomerized but this interaction did not require either the UBDs or the C-terminus. Besides, USP25 was monoubiquitinated and able to autodeubiquitinate in a possible loop of autoregulation. UBDs favored the monoubiquitination of USP25m at the preferential site lysine 99 (K99). This residue had been previously shown to be a target for SUMO and this modification inhibited USP25 activity. We showed that mutation of K99 clearly diminished USP25-dependent rescue of the specific substrate MyBPC1 from proteasome degradation, thereby supporting a new mechanistic model, in which USP25m is regulated through alternative conjugation of ubiquitin (activating) or SUMO (inhibiting) to the same lysine residue (K99), which may promote the interaction with distinct intramolecular regulatory domains

    PTMs in Conversation: Activity and Function of Deubiquitinating Enzymes Regulated via Post-Translational Modifications

    Get PDF
    Deubiquitinating enzymes (DUBs) constitute a diverse protein family and their impact on numerous biological and pathological processes has now been widely appreciated. Many DUB functions have to be tightly controlled within the cell, and this can be achieved in several ways, such as substrate-induced conformational changes, binding to adaptor proteins, proteolytic cleavage, and post-translational modifications (PTMs). This review is focused on the role of PTMs including monoubiquitination, sumoylation, acetylation, and phosphorylation as characterized and putative regulative factors of DUB function. Although this aspect of DUB functionality has not been yet thoroughly studied, PTMs represent a versatile and reversible method of controlling the role of DUBs in biological processes. In several cases PTMs might constitute a feedback mechanism insuring proper functioning of the ubiquitin proteasome system and other DUB-related pathways

    Ubiquitin-specific protease USP25 functions in endoplasmic reticulum-associated degradation

    No full text
    Endoplasmic Reticulum (ER)-associated degradation (ERAD) discards abnormal proteins synthesized in the ER. Through coordinated actions of ERAD components, misfolded/anomalous proteins are recognized, ubiquitinated, extracted from the ER and ultimately delivered to the proteasome for degradation. It is not well understood how ubiquitination of ERAD substrates is regulated. Here, we present evidence that the deubiquitinating enzyme Ubiquitin-Specific Protease 25 (USP25) is involved in ERAD. Our data support a model where USP25 counteracts ubiquitination of ERAD substrates by the ubiquitin ligase HRD1, rescuing them from degradation by the proteasome

    USP25 interacts with ERAD components.

    No full text
    <p>A) Schematics depict known domains of common (USP25(WT)) and muscle-specific (USP25(m)) isoforms of USP25 that are expressed in mammals <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036542#pone.0036542-Denuc1" target="_blank">[18]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036542#pone.0036542-Meulmeester1" target="_blank">[19]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036542#pone.0036542-Valero1" target="_blank">[41]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036542#pone.0036542-Valero2" target="_blank">[42]</a>. B) HEK-293 cells were transfected with HA-USP25. 48 hours later cells were fixed, probed as indicated and imaged with laser confocal microscopy. Panels IA-IC are single optical plane images (1 µM) of a cell immunolabeled for ER (KDEL, endogenous marker), HA-USP25 and nucleus (DAPI). Panel IC is the merged view of panels IA (green channel), IB (red channel) and DAPI (blue channel; not shown as a separate channel). Panels II and III are merged views of other cells stained similarly to panel I. Scale bars: 10 µM. C–G) HEK-293 cells were transfected as shown. Indicated constructs were immunopurified with bead-bound antibodies. Similar results were obtained from COS-7 cells for panels B–E (not shown). All USP25 constructs used in this figure were the common isoform (USP25(WT)).</p

    USP25 and HRD1 have opposing effects on CD3

    No full text
    <p>δ <b>protein levels and ubiquitination.</b> A) HEK-293 cells were transfected as indicated and harvested 48 hours later. Western blots are from whole cell lysates. HRD1(WT): normal HRD1; HRD1(CA): catalytically inactive HRD1, in which the catalytic cysteine is substituted by an alanine residue <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036542#pone.0036542-Kikkert1" target="_blank">[7]</a>. Histograms on the right: semi-quantification of data from the left and other independent experiments. Shown are means +/− standard deviations. CD3δ levels were normalized to loading control. P values from Student T tests are shown below histograms. B and C) HEK-293 cells were transfected with the indicated constructs. 48 hours post transfection, cells were treated for 6 hours with MG132 (15 µM) and HA-CD3δ was immunopurified using bead-bound anti-HA antibody after a stringent denature/renature step (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036542#s4" target="_blank">Materials and Methods</a> for details). Histograms: semi-quantification of bracketed ubiquitin smears from the experiment on the left and other similar, independent experiments. Shown are means +/− standard deviations. P values for panel C are from Student T-tests. </p

    USP25 inhibits degradation of the ERAD substrate CD3δ

    No full text
    <p>. A) Western blots of whole cell lysates. Top: HEK-293 cells were transfected as indicated and treated with the proteasome inhibitor MG132 where noted (15 µM, 6 hours) before harvesting. Bottom: semi-quantification of bands from western blots shown above and other similar, independent experiments. CD3δ protein levels were normalized to loading control. Shown are means +/− standard deviations. USP25(WT): common isoform of USP25; USP25(m): muscle-specific isoform of USP25. P values from Student T-tests are shown below histograms. B) Top: HEK-293 cells were transfected with the indicated constructs and harvested 48 hours later. Shown are western blots of whole cell lysates probed with the indicated antibodies. WT: wild type USP25, C178S: the catalytic cysteine of USP25 was replaced by a serine residue <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0036542#pone.0036542-Denuc1" target="_blank">[18]</a>, ΔUBA: UBA deleted, ΔUIM: both UIMs deleted. Bottom: semi-quantification of data from the top and two other independent experiments. CD3δ protein levels were normalized to loading control. Shown are means +/− standard deviations. P values from Student T-tests are shown below histograms. C) Top: HEK-293 cells were transfected as indicated. 48 hours post-transfection cells were treated for the indicated periods of time with 75 µg/ml cycloheximide to inhibit synthesis of new protein. Bottom: semi-quantification of western blots from the top and three other, independent experiments. CD3δ levels were normalized to loading control. Shown are means +/− standard deviations. P values are from Student T-tests of USP25 compared to vector control. D and E) HEK-293 cells were transfected with the indicated constructs. 48 hours later tagged constructs were immunopurified with bead-bound antibodies and probed as indicated.</p

    USP25 regulates protein levels of the ERAD substrates APP and CFTRΔF508.

    No full text
    <p>A) Left: whole cell lysates of HEK-293 cells transfected with the indicated constructs. USP25 (WT) and USP25(m) are both catalytically active isoforms. Where noted, cells were treated with the proteasome inhibitor MG132 (15 µM, 6 hrs) before harvesting. Right: histograms show semi-quantification of APP signal from the left portion and other similar, independent experiments. Bracket: APP bands were quantified separately, added and normalized to loading control. Shown are means +/− standard deviations. P values from Student T-tests are shown above histograms. No statistically significant differences were observed when cells were treated with MG132. B) Left: whole cells lysates of HEK-293 cells transfected as indicated and treated 48 hours later with cycloheximide to inhibit translation of new protein. Right: semi-quantification of western blots from the right and two other independent experiments. Shown are means +/− standard deviations. APP levels were normalized to loading control. P values are from Student T-tests where APP levels in the presence of USP25(WT) were compared to APP levels in presence of vector control. C) Left: HEK-293 cells were transfected with shRNA constructs targeting different portions of endogenous USP25 (RNAi-1, 2) or scramble RNA (RNAscr-1, 2). Cells were harvested 48 hours post-transfection and probed as indicated in western blots. Trials with 72 hour-long transfections yielded similar results (not shown). Right: semi-quantification of signal from the left and other similar, independent experiments. Bracket: APP bands were quantified separately, added together and normalized to loading control. Asterisks: P<0.01 according to Student T-tests comparing RNAi-1 and RNAi-2 lanes to RNAi-scr lanes. D) HEK-293 cells were transfected with the indicated constructs and Myc-USP25 was co-immunoprecipitated 48 hours later. E and F) HEK-293 cells were transfected with the indicated constructs. Western blots of whole cell lysates. For panels D, E and F: similar results were obtained from COS-7 cells (not shown).</p
    corecore