52 research outputs found
Factors That Influence Healthcare Professionalsâ Online Interaction in a Virtual Community of Practice
Online technologies have facilitated the development of Virtual Communities of Practice (virtual CoPs) to support
health professionals collaborate online to share knowledge, improve performance and support the spread of innovation
and best practices. Research, however, shows that many virtual CoPs do not achieve their expected potential because
online interaction among healthcare professionals is generally low. Focusing on health visitors, who are UK qualified
midwives or nurses who have undertaken additional qualifications as specialist public health workers in the community,
the paper examines the factors that influence online interaction among health visitors collaborating to share knowledge
and experience in a virtual CoP. The paper makes suggestions for how to improve online interaction among health professionals
in virtual CoPs by increasing the size of membership in order to take advantage of both posting and viewing
contributions, facilitating moderation to improve networking among geographically dispersed members groups and improving
the topic relevance in order to stimulate contributions
Infrapatellar Fat Pad Stem Cells Responsiveness to Microenvironment in Osteoarthritis: From Morphology to Function
Recently, infrapatellar fat pad (IFP) has been considered as a source of stem cells for cartilage regeneration in osteoarthritis (OA) due to their ability for differentiation into chondrocytes. However, stressful conditions, like that related to OA, may induce a pathogenic reprograming. The aim of this study was to characterize the structural and functional properties of a new population of stem cells isolated from osteoarthritic infrapatellar fat pad (OA-IFP). Nine OA patients undergoing total knee arthroplasty (TKA) were enrolled in this study [median age = 74 years, interquartile range (IQR) = 78.25-67.7; median body mass index = 29.4 Kg/m2, IQR = 31.7-27.4]. OA-IFP stem cells were isolated and characterized for morphology, stemness, metabolic profile and multi-differentiative potential by transmission electron microscopy, flow cytometric analysis, gene expression study and cytochemistry. OA-IFP stem cells displayed a spindle-like morphology, self-renewal potential and responsiveness (CD44, CD105, VEGFR2, FGFR2, IL1R, and IL6R) to microenvironmental stimuli. Characterized by high grade of stemness (STAT3, NOTCH1, c-Myc, OCT-4, KLF4, and NANOG), the cells showed peculiar immunophenotypic properties (CD73+/CD39+/CD90+/CD105+/CD44\u2013/+/CD45\u2013). The expression of HLA-DR, CD34, Fas and FasL was indicative of a possible phenotypic reprograming induced by inflammation. Moreover, the response to mechanical stimuli together with high expression level of COL1A1 gene, suggested their possible protective response against in vivo mechanical overloading. Conversely, the low expression of CD38/NADase was indicative of their inability to counteract NAD+-mediated OA inflammation. Based on the ultrastructural, immunophenotypic and functional characterization, OA-IFP stem cells were hypothesized to be primed by the pathological environment and to exert incomplete protective activity from OA inflammation
Collective intelligence for promoting changes in behaviour: a case study on energy conservation
Climate change is one of the biggest challenges humanity faces today. Despite of high investments in technology, battling climate change is futile without the participation of the public, and changing their perception and habits. Collective intelligence tools can play an important role in translating this âdistantâ concept that is climate change into practical hints for everyday life. In this paper, we report a case study grounded on collective intelligence tools to collaboratively build knowledge around energy conservation. A preliminary study to raise energy awareness in an academic environment is summarised, setting the scene to a more ambitious initiative based on personal stories to transform energy awareness into behaviour change. The role of the collective intelligence tools and other technical artefacts involved are discussed, suggesting strategies and features that contributed (or not) to usersâ engagement and collective awareness. Lessons learned from both studies are reported with a sociotechnical approach as implications for design pursuing behaviour change
The FuturICT education accelerator
Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year âman-on-the-moonâ project is proposed in which FuturICTâs unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a âwind tunnelâ for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT
The FuturICT education accelerator
Education is a major force for economic and social wellbeing. Despite high aspirations, education at all levels can be expensive and ineffective. Three Grand Challenges are identified: (1) enable people to learn orders of magnitude more effectively, (2) enable people to learn at orders of magnitude less cost, and (3) demonstrate success by exemplary interdisciplinary education in complex systems science. A ten year âman-on-the-moonâ project is proposed in which FuturICTâs unique combination of Complexity, Social and Computing Sciences could provide an urgently needed transdisciplinary language for making sense of educational systems. In close dialogue with educational theory and practice, and grounded in the emerging data science and learning analytics paradigms, this will translate into practical tools (both analytical and computational) for researchers, practitioners and leaders; generative principles for resilient educational ecosystems; and innovation for radically scalable, yet personalised, learner engagement and assessment. The proposed Education Accelerator will serve as a âwind tunnelâ for testing these ideas in the context of real educational programmes, with an international virtual campus delivering complex systems education exploiting the new understanding of complex, social, computationally enhanced organisational structure developed within FuturICT
Towards a global participatory platform Democratising open data, complexity science and collective intelligence
The FuturICT project seeks to use the power of big data, analytic models grounded in complexity science, and the collective intelligence they yield for societal benefit. Accordingly, this paper argues that these new tools should not remain the preserve of restricted government, scientific or corporate Ă©lites, but be opened up for societal engagement and critique. To democratise such assets as a public good, requires a sustainable ecosystem enabling different kinds of stakeholder in society, including but not limited to, citizens and advocacy groups, school and university students, policy analysts, scientists, software developers, journalists and politicians. Our working name for envisioning a sociotechnical infrastructure capable of engaging such a wide constituency is the Global Participatory Platform (GPP). We consider what it means to develop a GPP at the different levels of data, models and deliberation, motivating a framework for different stakeholders to find their ecological niches at different levels within the system, serving the functions of (i) sensing the environment in order to pool data, (ii) mining the resulting data for patterns in order to model the past/present/future, and (iii) sharing and contesting possible interpretations of what those models might mean, and in a policy context, possible decisions. A research objective is also to apply the concepts and tools of complexity science and social science to the projectâs own work. We therefore conceive the global participatory platform as a resilient, epistemic ecosystem, whose design will make it capable of self-organization and adaptation to a dynamic environment, and whose structure and contributions are themselves networks of stakeholders, challenges, issues, ideas and arguments whose structure and dynamics can be modelled and analysed
Planning in Knowledge Intensive Contexts: Systems Supporting Memory Tracing
In the spatial planning domain decision-making processes are carried out in knowledge intensive environments and aim at developing spatial plans as sort of future scenarios containing strategic prescriptions. These scenarios evolve along the decision making process and together with the emerging and evolving cognitive context. Consequently, tracking the assumptions, values, experiences, conversations, and decisions as they evolve along time, is relevant for decision making and enables better informed reflection for the plan development. In order to take into account the temporal dimension of knowledge in plan generation, and not only in the plan itself, we designed MESS, a MEmory Support System able to sustain a dynamic representation of the memory of the organizational field of intervention. In this paper we discuss the theoretical environment we referred while designing MESS and describe the system architecture
- âŠ