23 research outputs found

    In vitro cell culture of amniotic fluid keratinocytes on amniotic membrane: the ideal tissue for repairing skin ulcers

    Get PDF
    OBJECTIVE: The amniotic fluid contains a large population of stem keratinocytes demonstrating minimal immunological rejection. Recent evidence suggests that stem cells from the amniotic fluid can be employed in the field of tissue engineering. In this work we identified precursors of the epithelial cells and expanded them in vitro.MATERIALS AND METHODS: After collecting samples of amniotic fluid and separating the cells via centrifugation, we seeded a portion of these cells in selection media to analyze the proliferation of epithelial cells. The stem cells precursors of keratinocytes were identified through specific markers. The expression of these markers was evaluated by immunofluorescence and reverse transcription polymerase chain reaction (PCR).RESULTS: The stem cells demonstrated 90% confluence, after undergoing proliferation in the selection medium for 15 days. Most of these cells tested positive for the keratinocyte-specific markers, but negative for stem cell specific markers. Of note, the identity of the keratinocytes was well established even after several subcultures.CONCLUSIONS: These results suggested that it is feasible to isolate and expand differentiated cell populations in the amniotic fluid from precursor cells. Furthermore, amniotic membranes can be utilized as scaffolds to grow keratinocytes, which can be potentially exploited in areas of skin ulcer transplantation and tissue engineering interventions

    Naturally-occurring and cultured bacteriophages in human therapy

    No full text
    OBJECTIVE: The aim of the study was to show the importance of developing techniques that could exploit the potential of bacteriophages as therapeutics or food supplements

    Genetics and pharmacogenetics in the diagnosis and therapy of cardiovascular diseases

    No full text
    Cardiovascular diseases are the main cause of death worldwide. The ability to accurately define individual susceptibility to these disorders is therefore of strategic importance. Linkage analysis and genome-wide association studies have been useful for the identification of genes related to cardiovascular diseases. The identification of variants predisposing to cardiovascular diseases contributes to the risk profile and the possibility of tailored preventive or therapeutic strategies. Molecular genetics and pharmacogenetics are playing an increasingly important role in the correct clinical management of patients. For instance, genetic testing can identify variants that influence how patients metabolize medications, making it possible to prescribe personalized, safer and more efficient treatments, reducing medical costs and improving clinical outcomes. In the near future we can expect a great increment in information and genetic testing, which should be acknowledged as a true branch of diagnostics in cardiology, like hemodynamics and electrophysiology. In this review we summarize the genetics and pharmacogenetics of the main cardiovascular diseases, showing the role played by genetic information in the identification of cardiovascular risk factors and in the diagnosis and therapy of these conditions. (www.actabiomedica.it)

    Genetics of fat deposition

    No full text
    Adipose tissue distribution usually varies among men and women. In men, adipose tissue is known to accumulate in the abdominal region surrounding the visceral organs (android fat distribution) whereas, in women, the accumulation of adipose tissue generally occurs in the gluteal-femoral regions (gynoid fat distribution). In some cases, however, android distribution can be found in women and gynoid distribution can be found in men. The regulation of adipose tissue accumulation involves interaction of a variety of genetic and environmental factors. This review examines genetic factors that cause differential distribution of adipose tissue in different depots of the body, between men and women and between different ethnicities. Genome-wide association studies can be used to identify genetic associations with the distribution and accumulation of adipose tissue. Insight into adipose tissue accumulation and distribution mechanisms could lead to development of personalized interventions for people who develop increased fat mass

    Aldo-keto reductase 1c1 (Akr1c1) as the first mutated gene in a family with nonsyndromic primary lipedema

    No full text
    Lipedema is an often underdiagnosed chronic disorder that affects subcutaneous adipose tissue almost exclusively in women, which leads to disproportionate fat accumulation in the lower and upper body extremities. Common comorbidities include anxiety, depression, and pain. The correlation between mood disorder and subcutaneous fat deposition suggests the involvement of steroids metabolism and neurohormones signaling, however no clear association has been established so far. In this study, we report on a family with three patients affected by sex-limited autosomal dominant nonsyndromic lipedema. They had been screened by whole exome sequencing (WES) which led to the discovery of a missense variant p.(Leu213Gln) in AKR1C1, the gene encoding for an aldo-keto reductase catalyzing the reduction of progesterone to its inactive form, 20-α-hydroxyprogesterone. Comparative molecular dynamics simulations of the wild-type vs. variant enzyme, corroborated by a thorough structural and functional bioinformatic analysis, suggest a partial loss-of-function of the variant. This would result in a slower and less efficient reduction of progesterone to hydroxyprogesterone and an increased subcutaneous fat deposition in variant carriers. Overall, our results suggest that AKR1C1 is the first candidate gene associated with nonsyndromic lipedema

    REVIEW OF THE FUNCTION OF SEMA3A IN LYMPHATIC VESSEL MATURATION AND ITS POTENTIAL AS A CANDIDATE GENE FOR LYMPHEDEMA: ANALYSIS OF THREE FAMILIES WITH RARE CAUSATIVE VARIANTS

    No full text
    SEMA3A is a semaphorin involved in cell signaling with PlexinA1 and Neuropilin-1 (NRP1) receptors and it is responsible for recruiting dendritic cells into lymphatics. Mutations in the SEMA3A gene result in abnormalities in lymphatic vessel development and maturation. We investigated the association of SEMA3A variants detected in lymphedema patients with lymphatic maturation and lymphatic system malfunction. First, we used NGS technology to sequence the SEMA3A gene in 235 lymphedema patients who carry wild type alleles for known lymphedema genes. We detected three different missense variants in three families. Bioinformatic results showed that some protein interactions could be altered by these variants. Other unaffected family members of the probands also reported different episodes of subclinical edema. We then evaluated the importance of the SEMA3A gene in the formation and maturation of lymphatic vessels. Our results determined that SEMA3A variants segregate in families with lymphatic system malformations and recommend the inclusion of SEMA3A in the gene panel for testing of patients with lymphedema
    corecore