6,240 research outputs found

    Understanding the agility of running birds: Sensorimotor and mechanical factors in avian bipedal locomotion

    Get PDF
    Birds are a diverse and agile lineage of vertebrates that all use bipedal locomotion for at least part of their life. Thus birds provide a valuable opportunity to investigate how biomechanics and sensorimotor control are integrated for agile bipedal locomotion. This review summarizes recent work using terrain perturbations to reveal neuromechanical control strategies used by ground birds to achieve robust, stable and agile running. Early experiments in running guinea fowl aimed to reveal the immediate intrinsic mechanical response to an unexpected drop ('pothole') in terrain. When navigating the pothole, guinea fowl experience large changes in leg posture in the perturbed step, which correlates strongly with leg loading and perturbation recovery. Analysis of simple theoretical models of running has further confirmed the crucial role of swing-leg trajectory control for regulating foot contact timing and leg loading in uneven terrain. Coupling between body and leg dynamics results in an inherent trade-off in swing leg retraction rate for fall avoidance versus injury avoidance. Fast leg retraction minimizes injury risk, but slow leg retraction minimizes fall risk. Subsequent experiments have investigated how birds optimize their control strategies depending on the type of perturbation (pothole, step, obstacle), visibility of terrain, and with ample practice negotiating terrain features. Birds use several control strategies consistently across terrain contexts: 1) independent control of leg angular cycling and leg length actuation, which facilitates dynamic stability through simple control mechanisms, 2) feedforward regulation of leg cycling rate, which tunes foot-contact timing to maintain consistent leg loading in uneven terrain (minimizing fall and injury risks), 3) load-dependent muscle actuation, which rapidly adjusts stance push-off and stabilizes body mechanical energy, and 4) multi-step recovery strategies that allow body dynamics to transiently vary while tightly regulating leg loading to minimize risks of fall and injury. In future work, it will be interesting to investigate the learning and adaptation processes that allow animals to adjust neuromechanical control mechanisms over short and long timescales

    The story of Oh: the aesthetics and rhetoric of a common vowel sound

    Get PDF
    Studies in Musical Theatre is the only peer-reviewed journal dedicated to musical theatre. It was launched in 2007 and is now in its seventh volume. It has an extensive international readership and is edited by Dominic Symonds and George Burrows. This article investigates the use of the ‘word’ ‘Oh’ in a variety of different performance idioms. Despite its lack of ‘meaning’, the sound is used in both conversation and poetic discourse, and I discuss how it operates communicatively and expressively through contextual resonances, aesthetic manipulation and rhetorical signification. The article first considers the aesthetically modernist work of Cathy Berberian in Bussotti’s La Passion Selon Sade; then it considers the rhetorically inflected use of ‘Oh’ to construct social resonance in popular song;finally, it discusses two important uses of the sound ‘Oh’ which bookend the Broadway musical Oklahoma!, serving to consolidate the allegorical and musico-dramatic narrative of the show

    An η\eta-condensate of fermionic atom pairs via adiabatic state preparation

    Get PDF
    We discuss how an η\eta-condensate, corresponding to an exact excited eigenstate of the Fermi-Hubbard model, can be produced with cold atoms in an optical lattice. Using time-dependent density matrix renormalisation group methods, we analyse a state preparation scheme beginning from a band insulator state in an optical superlattice. This state can act as an important test case, both for adiabatic preparation methods and the implementation of the many-body Hamiltonian, and measurements on the final state can be used to help detect associated errors.Comment: 5 pages, 4 figure

    Non-equilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission

    Get PDF
    We analyze in detail the heating of bosonic atoms in an optical lattice due to incoherent scattering of light from the lasers forming the lattice. Because atoms scattered into higher bands do not thermalize on the timescale of typical experiments, this process cannot be described by the total energy increase in the system alone (which is determined by single-particle effects). The heating instead involves an important interplay between the atomic physics of the heating process and the many-body physics of the state. We characterize the effects on many-body states for various system parameters, where we observe important differences in the heating for strongly and weakly interacting regimes, as well as a strong dependence on the sign of the laser detuning from the excited atomic state. We compute heating rates and changes to characteristic correlation functions based both on perturbation theory calculations, and a time-dependent calculation of the dissipative many-body dynamics. The latter is made possible for 1D systems by combining time-dependent density matrix renormalization group (t-DMRG) methods with quantum trajectory techniques.Comment: 17 pages, 14 figure

    Real-time dynamics at finite temperature by DMRG: A path-integral approach

    Full text link
    We propose a path-integral variant of the DMRG method to calculate real-time correlation functions at arbitrary finite temperatures. To illustrate the method we study the longitudinal autocorrelation function of the XXZXXZ-chain. By comparison with exact results at the free fermion point we show that our method yields accurate results up to a limiting time which is determined by the spectrum of the reduced density matrix.Comment: 5 pages, 4 figure

    Time-dependent currents of 1D bosons in an optical lattice

    Full text link
    We analyse the time-dependence of currents in a 1D Bose gas in an optical lattice. For a 1D system, the stability of currents induced by accelerating the lattice exhibits a broad crossover as a function of the magnitude of the acceleration, and the strength of the inter-particle interactions. This differs markedly from mean-field results in higher dimensions. Using the infinite Time Evolving Block Decimation algorithm, we characterise this crossover by making quantitative predictions for the time-dependent behaviour of the currents and their decay rate. We also compute the time-dependence of quasi-condensate fractions which can be measured directly in experiments. We compare our results to calculations based on phase-slip methods, finding agreement with the scaling as the particle density increases, but with significant deviations near unit filling.Comment: 19 pages, 10 figure

    Dynamical crystal creation with polar molecules or Rydberg atoms in optical lattices

    Get PDF
    We investigate the dynamical formation of crystalline states with systems of polar molecules or Rydberg atoms loaded into a deep optical lattice. External fields in these systems can be used to couple the atoms or molecules between two internal states: one that is weakly interacting and one that exhibits a strong dipole-dipole interaction. By appropriate time variation of the external fields we show that it is possible to produce crystalline states of the strongly interacting states with high filling fractions chosen via the parameters of the coupling.We study the coherent dynamics of this process in one dimension (1D) using a modified form of the time-evolving block decimation (TEBD) algorithm, and obtain crystalline states for system sizes and parameters corresponding to realistic experimental configurations. For polar molecules these crystalline states will be long-lived, assisting in a characterization of the state via the measurement of correlation functions. We also show that as the coupling strength increases in the model, the crystalline order is broken. This is characterized in 1D by a change in density-density correlation functions, which decay to a constant in the crystalline regime, but show different regions of exponential and algebraic decay for larger coupling strengths

    Time-dependent evolution of two coupled Luttinger liquids

    Get PDF
    We consider two disconnected Luttinger liquids which are coupled at t=0t=0 through chiral density-density interactions. Both for t<0t<0 and t≥0t \geq 0 the system is exactly solvable by means of bosonization and this allows to evaluate analytically the time-dependence of correlation functions. We find that in the long-time limit the critical exponent governing the one-particle correlation function differs from the exponent dictated by the equilibrium ground state of the coupled system. We also discuss how this reflects on some physical quantities which are accessible in real experiments.Comment: 6 pages, 1 eps fig, revised version accepted for publication in Phys. Rev.

    Measuring entanglement growth in quench dynamics of bosons in an optical lattice

    Full text link
    We discuss a scheme to measure the many-body entanglement growth during quench dynamics with bosonic atoms in optical lattices. By making use of a 1D or 2D setup in which two copies of the same state are prepared, we show how arbitrary order Renyi entropies can be extracted using tunnel-coupling between the copies and measurement of the parity of on-site occupation numbers, as has been performed in recent experiments. We illustrate these ideas for a Superfluid-Mott insulator quench in the Bose-Hubbard model, and also for hard-core bosons, and show that the scheme is robust against imperfections in the measurements.Comment: 4+ pages plus supplementary materia
    • …
    corecore