15,820 research outputs found

    Output-input stability and minimum-phase nonlinear systems

    Full text link
    This paper introduces and studies the notion of output-input stability, which represents a variant of the minimum-phase property for general smooth nonlinear control systems. The definition of output-input stability does not rely on a particular choice of coordinates in which the system takes a normal form or on the computation of zero dynamics. In the spirit of the ``input-to-state stability'' philosophy, it requires the state and the input of the system to be bounded by a suitable function of the output and derivatives of the output, modulo a decaying term depending on initial conditions. The class of output-input stable systems thus defined includes all affine systems in global normal form whose internal dynamics are input-to-state stable and also all left-invertible linear systems whose transmission zeros have negative real parts. As an application, we explain how the new concept enables one to develop a natural extension to nonlinear systems of a basic result from linear adaptive control.Comment: Revised version, to appear in IEEE Transactions on Automatic Control. See related work in http://www.math.rutgers.edu/~sontag and http://black.csl.uiuc.edu/~liberzo

    Economic Analysis in the Pacific Northwest Land Resources Project: Theoretical Considerations and Preliminary Results

    Get PDF
    The Pacific Northwest Land Resources Inventory Demonstration Project i s an a ttempt to combine a whole spectrum of heterogeneous geographic, institutional and applications elements in a synergistic approach to the evaluation of remote sensing techniques. This diversity is the prime motivating factor behind a theoretical investigation of alternative economic analysis procedures. For a multitude of reasons--simplicity, ease of understanding, financial constraints and credibility, among others--cost-effectiveness emerges as the most practical tool for conducting such evaluation determinatIons in the Pacific Northwest. Preliminary findings in two water resource application areas suggest, in conformity with most published studies, that Lands at-aided data collection methods enjoy substantial cost advantages over alternative techniques. The pntential for sensitivity analysis based on cost/accuracy tradeoffs is considered on a theoretical plane in the absence of current accuracy figures concerning the Landsat-aided approach

    A Hybrid Observer for a Distributed Linear System with a Changing Neighbor Graph

    Full text link
    A hybrid observer is described for estimating the state of an m>0m>0 channel, nn-dimensional, continuous-time, distributed linear system of the form x˙=Ax,  yi=Cix,  i∈{1,2,…,m}\dot{x} = Ax,\;y_i = C_ix,\;i\in\{1,2,\ldots, m\}. The system's state xx is simultaneously estimated by mm agents assuming each agent ii senses yiy_i and receives appropriately defined data from each of its current neighbors. Neighbor relations are characterized by a time-varying directed graph N(t)\mathbb{N}(t) whose vertices correspond to agents and whose arcs depict neighbor relations. Agent ii updates its estimate xix_i of xx at "event times" t1,t2,…t_1,t_2,\ldots using a local observer and a local parameter estimator. The local observer is a continuous time linear system whose input is yiy_i and whose output wiw_i is an asymptotically correct estimate of LixL_ix where LiL_i a matrix with kernel equaling the unobservable space of (Ci,A)(C_i,A). The local parameter estimator is a recursive algorithm designed to estimate, prior to each event time tjt_j, a constant parameter pjp_j which satisfies the linear equations wk(tj−τ)=Lkpj+μk(tj−τ),  k∈{1,2,…,m}w_k(t_j-\tau) = L_kp_j+\mu_k(t_j-\tau),\;k\in\{1,2,\ldots,m\}, where τ\tau is a small positive constant and μk\mu_k is the state estimation error of local observer kk. Agent ii accomplishes this by iterating its parameter estimator state ziz_i, qq times within the interval [tj−τ,tj)[t_j-\tau, t_j), and by making use of the state of each of its neighbors' parameter estimators at each iteration. The updated value of xix_i at event time tjt_j is then xi(tj)=eAτzi(q)x_i(t_j) = e^{A\tau}z_i(q). Subject to the assumptions that (i) the neighbor graph N(t)\mathbb{N}(t) is strongly connected for all time, (ii) the system whose state is to be estimated is jointly observable, (iii) qq is sufficiently large, it is shown that each estimate xix_i converges to xx exponentially fast as t→∞t\rightarrow \infty at a rate which can be controlled.Comment: 7 pages, the 56th IEEE Conference on Decision and Contro

    On a Petrov-type D homogeneous solution

    Full text link
    We present a new two-parameter family of solutions of Einstein gravity with negative cosmological constant in 2+1 dimensions. These solutions are obtained by squashing the anti-de Sitter geometry along one direction and posses four Killing vectors. Global properties as well as the four dimensional generalization are discussed, followed by the investigation of the geodesic motion. A simple global embedding of these spaces as the intersection of four quadratic surfaces in a seven dimensional space is obtained. We argue also that these geometries describe the boundary of a four dimensional nutty-bubble solution and are relevant in the context of AdS/CFT correspondence.Comment: 20 pages, TeX fil

    Force-extension relation of cross-linked anisotropic polymer networks

    Get PDF
    Cross-linked polymer networks with orientational order constitute a wide class of soft materials and are relevant to biological systems (e.g., F-actin bundles). We analytically study the nonlinear force-extension relation of an array of parallel-aligned, strongly stretched semiflexible polymers with random cross-links. In the strong stretching limit, the effect of the cross-links is purely entropic, independent of the bending rigidity of the chains. Cross-links enhance the differential stretching stiffness of the bundle. For hard cross-links, the cross-link contribution to the force-extension relation scales inversely proportional to the force. Its dependence on the cross-link density, close to the gelation transition, is the same as that of the shear modulus. The qualitative behavior is captured by a toy model of two chains with a single cross-link in the middle.Comment: 7 pages, 4 figure

    Combustion of hydrogen-air jets in local chemical equilibrium: A guide to the CHARNAL computer program

    Get PDF
    A guide to a computer program, written in FORTRAN 4, for predicting the flow properties of turbulent mixing with combustion of a circular jet of hydrogen into a co-flowing stream of air is presented. The program, which is based upon the Imperial College group's PASSA series, solves differential equations for diffusion and dissipation of turbulent kinetic energy and also of the R.M.S. fluctuation of hydrogen concentration. The effective turbulent viscosity for use in the shear stress equation is computed. Chemical equilibrium is assumed throughout the flow

    Nonlinear modes in the harmonic PT-symmetric potential

    Full text link
    We study the families of nonlinear modes described by the nonlinear Schr\"odinger equation with the PT-symmetric harmonic potential x2−2iαxx^2-2i\alpha x. The found nonlinear modes display a number of interesting features. In particular, we have observed that the modes, bifurcating from the different eigenstates of the underlying linear problem, can actually belong to the same family of nonlinear modes. We also show that by proper adjustment of the coefficient α\alpha it is possible to enhance stability of small-amplitude and strongly nonlinear modes comparing to the well-studied case of the real harmonic potential.Comment: 7 pages, 2 figures; accepted to Phys. Rev.

    Ion Trap Mass Spectrometers for Identity, Abundance and Behavior of Volatiles on the Moon

    Get PDF
    NASA GSFC and The Open University (UK) are collaborating to deploy an Ion Trap Mass Spectrometer on the Moon to investigate the lunar water cycle. The ITMS is flight-proven throughthe Rosetta Philae comet lander mission. It is also being developed under ESA funding to analyse samples drilled from beneath the lunar surface on the Roscosmos Luna-27 lander (2025).Now, GSFC and OU will now develop a compact ITMS instrument to study the near-surface lunar exosphere on board a CLPS Astrobotic lander at Lacus Mortis in 2021
    • …
    corecore