12,270 research outputs found

    Quantitative Determination of the Adiabatic Condition Using Force-Detected Nuclear Magnetic Resonance

    Full text link
    The adiabatic condition governing cyclic adiabatic inversion of proton spins in a micron-sized ammonium chloride crystal was studied using room temperature nuclear magnetic resonance force microscopy. A systematic degradation of signal-to-noise was observed as the adiabatic condition became violated. A theory of adiabatic following applicable to cyclic adiabatic inversion is reviewed and implemented to quantitatively determine an adiabaticity threshold (γH1)2/(ωoscΩ)=6.0(\gamma H_1)^2/(\omega_{osc}\Omega) = 6.0 from our experimental results.Comment: 5 pages, 3 fig

    Structure and magnetic interactions in the solid solution Ba3-xSrxCr2O8

    Full text link
    Solid solutions of the magnetic insulators Ba3Cr2O8 and Sr3Cr2O8 (Ba3-xSrxCr2O8) have been prepared in polycrystalline form for the first time. Single crys- talline material was obtained using a mirror image floating zone technique. X-ray diffraction data taken at room temperature indicate that the space group of Ba3-xSrxCr2O8 remains unchanged for all values of x, while the cell parameters depend on the chemical composition, as expected. Magnetization data, measured from 300 K down to 2 K, suggests that the interaction constant Jd within the Cr5+ dimers varies in a peculiar way as a function of x, starting at Jd = 25K for x = 0, then first slightly dropping to Jd = 18K for x = 0.75, before reaching Jd = 62K for x = 3

    Toxicity of materials in fire situations: Laboratory data obtained at the University of San Francisco

    Get PDF
    Approximately 300 materials were evaluated using a specific set of test conditions. Materials tested included wood, fibers, fabrics and synthetic polymers. Data obtained using 10 different sets of test conditions are presented

    Reduced-rank spatio-temporal modeling of air pollution concentrations in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    Full text link
    There is growing evidence in the epidemiologic literature of the relationship between air pollution and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use regression with kriging to account for spatial dependence in pollutant concentrations. Temporal variability is captured using temporal trends estimated via modified singular value decomposition and temporally varying spatial residuals. This model utilizes monitoring data from existing regulatory networks and supplementary MESA Air monitoring data to predict concentrations for individual cohort members. In general, spatio-temporal models are limited in their efficacy for large data sets due to computational intractability. We develop reduced-rank versions of the MESA Air spatio-temporal model. To do so, we apply low-rank kriging to account for spatial variation in the mean process and discuss the limitations of this approach. As an alternative, we represent spatial variation using thin plate regression splines. We compare the performance of the outlined models using EPA and MESA Air monitoring data for predicting concentrations of oxides of nitrogen (NOx_x)-a pollutant of primary interest in MESA Air-in the Los Angeles metropolitan area via cross-validated R2R^2. Our findings suggest that use of reduced-rank models can improve computational efficiency in certain cases. Low-rank kriging and thin plate regression splines were competitive across the formulations considered, although TPRS appeared to be more robust in some settings.Comment: Published in at http://dx.doi.org/10.1214/14-AOAS786 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Active Carbon and Oxygen Shell Burning Hydrodynamics

    Full text link
    We have simulated 2.5×103\times10^3 s of the late evolution of a 23M⊙23 \rm M_\odot star with full hydrodynamic behavior. We present the first simulations of a multiple-shell burning epoch, including the concurrent evolution and interaction of an oxygen and carbon burning shell. In addition, we have evolved a 3D model of the oxygen burning shell to sufficiently long times (300 s) to begin to assess the adequacy of the 2D approximation. We summarize striking new results: (1) strong interactions occur between active carbon and oxygen burning shells, (2) hydrodynamic wave motions in nonconvective regions, generated at the convective-radiative boundaries, are energetically important in both 2D and 3D with important consequences for compositional mixing, and (3) a spectrum of mixed p- and g-modes are unambiguously identified with corresponding adiabatic waves in these computational domains. We find that 2D convective motions are exaggerated relative to 3D because of vortex instability in 3D. We discuss the implications for supernova progenitor evolution and symmetry breaking in core collapse.Comment: 5 pages, 4 figures in emulateapj format. Accepted for publication in ApJ Letters. High resolution figure version available at http://spinach.as.arizona.ed

    Peering beyond IRAS: The 100 to 350 micron dust emission from galaxies

    Get PDF
    Several arguments can be made to study the continuum emission from dust in galaxies at wavelengths between the cutoff of the Infrared Astronomy Satellite (IRAS) survey (about 100 microns) and the shortest wavelength that is commonly accessible from the ground (about 350 microns). Some theoretical work (see the summary by Cox and Mezger 1989) indicates that there are very cool (T sub d less than or equal to 25 K) components to the dust emission that emit primarily at wavelengths between 100 and 250 microns. In fact, a significant fraction of the total luminosity, representing a large fraction of the dust mass in some types of galaxies, is emitted at long far-infrared wavelengths. In such cases, the cool dust must play a major role in regulation of the energy balance of the Interstellar Medium (ISM) and in shielding the cores of neutral clouds

    The Impact of Hydrodynamic Mixing on Supernova Progenitors

    Full text link
    Recent multidimensional hydrodynamic simulations have demonstrated the importance of hydrodynamic motions in the convective boundary and radiative regions of stars to transport of energy, momentum, and composition. The impact of these processes increases with stellar mass. Stellar models which approximate this physics have been tested on several classes of observational problems. In this paper we examine the implications of the improved treatment on supernova progenitors. The improved models predict substantially different interior structures. We present pre-supernova conditions and simple explosion calculations from stellar models with and without the improved mixing treatment at 23 solar masses. The results differ substantially.Comment: 12 pages, 2 figures, accepted for publication in the Astrophysical Journal Letter
    • …
    corecore