research

Quantitative Determination of the Adiabatic Condition Using Force-Detected Nuclear Magnetic Resonance

Abstract

The adiabatic condition governing cyclic adiabatic inversion of proton spins in a micron-sized ammonium chloride crystal was studied using room temperature nuclear magnetic resonance force microscopy. A systematic degradation of signal-to-noise was observed as the adiabatic condition became violated. A theory of adiabatic following applicable to cyclic adiabatic inversion is reviewed and implemented to quantitatively determine an adiabaticity threshold (γH1)2/(ωoscΩ)=6.0(\gamma H_1)^2/(\omega_{osc}\Omega) = 6.0 from our experimental results.Comment: 5 pages, 3 fig

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020