1,611 research outputs found

    Propagating and evanescent waves in absorbing media

    Full text link
    We compare the behavior of propagating and evanescent light waves in absorbing media with that of electrons in the presence of inelastic scattering. The imaginary part of the dielectric constant results primarily in an exponential decay of a propagating wave, but a phase shift for an evanescent wave. We then describe how the scattering of quantum particles out of a particular coherent channel can be modeled by introducing an imaginary part to the potential in analogy with the optical case. The imaginary part of the potential causes additional scattering which can dominate and actually prevent absorption of the wave for large enough values of the imaginary part. We also discuss the problem of maximizing the absorption of a wave and point out that the existence of a bound state greatly aids absorption. We illustrate this point by considering the absorption of light at the surface of a metal.Comment: Brief Review, to appear in the American Journal of Physics, http://www.kzoo.edu/ajp

    Shuttle TPS thermal performance and analysis methodology

    Get PDF
    Thermal performance of the thermal protection system was approximately as predicted. The only extensive anomalies were filler bar scorching and over-predictions in the high Delta p gap heating regions of the orbiter. A technique to predict filler bar scorching has been developed that can aid in defining a solution. Improvement in high Delta p gap heating methodology is still under study. Minor anomalies were also examined for improvements in modeling techniques and prediction capabilities. These include improved definition of low Delta p gap heating, an analytical model for inner mode line convection heat transfer, better modeling of structure, and inclusion of sneak heating. The limited number of problems related to penetration items that presented themselves during orbital flight tests were resolved expeditiously, and designs were changed and proved successful within the time frame of that program

    Universal quantum fluctuations of a cavity mode driven by a Josephson junction

    Get PDF
    We analyze the quantum dynamics of a superconducting cavity coupled to a voltage biased Josephson junction. The cavity is strongly excited at resonances where the voltage energy lost by a Cooper pair traversing the circuit is a multiple of the cavity photon energy. We find that the resonances are accompanied by substantial squeezing of the quantum fluctuations of the cavity over a broad range of parameters and are able to identify regimes where the fluctuations in the system take on universal values.Comment: 5 pages, 4 figure

    Charge noise at Cooper-pair resonances

    Get PDF
    We analyze the charge dynamics of a superconducting single-electron transistor (SSET) in the regime where charge transport occurs via Cooper-pair resonances. Using an approximate description of the system Hamiltonian, in terms of a series of resonant doublets, we derive a Born-Markov master equation describing the dynamics of the SSET. The average current displays sharp peaks at the Cooper-pair resonances and we find that the charge noise spectrum has a characteristic structure which consists of a series of asymmetric triplets of peaks. The strongest feature in the charge noise spectrum is the triplet of peaks centered at zero frequency which has a peak spacing equal to the level separation within the doublets and is similar to the triplet in the spectrum of a driven, damped, two-level system. We also explore the back-action that the SSET charge noise would have on an oscillator coupled to the island charge, measurement of which provides a way of probing the charge noise spectrum.Comment: 14 pages, 7 figure

    Noise properties of two single electron transistors coupled by a nanomechanical resonator

    Full text link
    We analyze the noise properties of two single electron transistors (SETs) coupled via a shared voltage gate consisting of a nanomechanical resonator. Working in the regime where the resonator can be treated as a classical system, we find that the SETs act on the resonator like two independent heat baths. The coupling to the resonator generates positive correlations in the currents flowing through each of the SETs as well as between the two currents. In the regime where the dynamics of the resonator is dominated by the back-action of the SETs, these positive correlations can lead to parametrically large enhancements of the low frequency current noise. These noise properties can be understood in terms of the effects on the SET currents of fluctuations in the state of a resonator in thermal equilibrium which persist for times of order the resonator damping time.Comment: Accepted for publication in Phys. Rev.

    Chiral and Continuum Extrapolation of Partially-Quenched Lattice Results

    Full text link
    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretisation, finite-volume and partial quenching artefacts are treated in a unified framework which is consistent with the low-energy behaviour of QCD. This analysis incorporates the leading infrared behaviour dictated by chiral effective field theory. As the two-pion decay channel cannot be described by a low-energy expansion alone, a highly-constrained model for the decay channel of the rho-meson is introduced. The latter is essential for extrapolating lattice results from the quark-mass regime where the rho is observed to be a physical bound state.Comment: 9 pages, 3 figures; revised version appearing in PL
    corecore