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We analyze the charge dynamics of a superconducting single-electron transistor (SSET) in the
regime where charge transport occurs via Cooper-pair resonances. Using an approximate description
of the system Hamiltonian, in terms of a series of resonant doublets, we derive a Born-Markov master
equation describing the dynamics of the SSET. The average current displays sharp peaks at the
Cooper-pair resonances and we find that the charge noise spectrum has a characteristic structure
which consists of a series of asymmetric triplets of peaks. The strongest feature in the charge noise
spectrum is the triplet of peaks centered at zero frequency which has a peak spacing equal to the
level separation within the doublets and is similar to the triplet in the spectrum of a driven, damped,
two-level system. We also explore the back-action that the SSET charge noise would have on an
oscillator coupled to the island charge, measurement of which provides a way of probing the charge
noise spectrum.

PACS numbers: 74.50.+r, 74.78.Na, 42.50.Lc

I. INTRODUCTION

Mesoscopic superconducting circuits in which there is
an interplay between Josephson tunneling and electro-
static charging effects display a wide range of interest-
ing behaviors. The quantum coherence and non-linearity
generated by Josephson junctions make superconducting
circuits obvious candidates for qubits.1,2 However, the
usefulness of qubits depends strongly on the extent to
which the level of dissipation and the attendant deco-
herence can be minimized.2 In contrast, there are many
other applications of superconducting circuits, as mea-
suring devices3–7 or as coolers,8 where irreversible trans-
port is necessary and hence dissipation plays an essential
positive role.

The superconducting single electron transistor9

(SSET) is an example of a superconducting device with
applications where both coherence and dissipation are
important. The SSET consists of a small superconduct-
ing island linked to superconducting leads by Josephson
junctions. A voltage gate coupled to the island can be
used to control the flow of charge. The strong depen-
dence of the charge transport through the SSET island
on the properties of the gate makes it an ideal sensing
device; it can act as either an electrometer3–6 or, (when
the gate is mechanically compliant) as a displacement
detector.7,8 Sensing typically involves a coupling between
the SSET island charge and the degree of freedom be-
ing measured, hence the charge noise spectrum4,10,11

determines the back-action of the SSET on the mea-
sured system (within the linear response regime). Al-
though the back-action is a nuisance in the context of
measurement, it can be used to manipulate the state of
the measured system:10,12,13 one recent experiment used
the back-action from a SSET to cool a nanomechanical

resonator,8 whilst another demonstrated the production
of laser-like states of self-sustained oscillation in an elec-
trical resonator.14 From another perspective the back-
action of the SSET can be seen as providing an efficient
means of probing its quantum noise properties.11,15

The SSET supports a wide range of different current
carrying processes depending on the choice of operating
point.16–23 When a large voltage is applied (V ≥ 4∆/e,
where ∆ is the superconducting gap), it becomes ener-
getically favorable to break up the Cooper-pairs and the
transport is dominated by inelastic (incoherent) tunnel-
ing of quasiparticles at both junctions. At lower voltages
the transport involves Josephson tunneling of Cooper-
pairs, though dissipation is still required to generate a
dc current. In the regime where V ∼ ∆/e, current
resonances known as the Josephson quasiparticle16,17,23

(JQP) and double Josephson quasiparticle4,23 (DJQP)
cycles combine coherent Cooper-pair tunneling and dis-
sipative quasiparticle tunneling. The JQP and DJQP
cycles have attracted much recent attention as the res-
onant and (partly) coherent nature of the transport
leads to measurement sensitivities approaching the quan-
tum limit, as well as a range of interesting back-action
effects.4,7,8,10,12–15,24,25

In this article we focus instead on Cooper-pair
resonances17–19,21,26–28 which occur at even lower volt-
ages than the JQP and DJQP cycles and involve the
coherent transfer of one or more Cooper-pairs across the
two SSET junctions. At these lower voltages quasipar-
ticles are almost completely absent and dissipation and
decoherence are dominated by the electromagnetic envi-
ronment of the SSET. Cooper-pair resonances are known
to give rise to sharp features in the current voltage char-
acteristics of the SSET,17–19,21,26–28 though much less is
known about their quantum noise properties.
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We develop a simple model for the SSET system, valid
at low voltages and for embedding circuits with resis-
tances much less than the resistance quantum, RQ =
h/4e2. This model, which has important similarities
with the standard description of resonance fluorescence
of quantum optics, divides the energy levels of the
system into pairs of resonant levels with the spacing
within a doublet much less than the spacing between
doublets.26,29 We derive the master equation of the SSET
within the Born-Markov approximations and then calcu-
late both the average current and the charge noise spec-
trum in the vicinity of the Cooper-pair resonances. The
dominant feature in the charge noise spectrum is a triplet
of peaks centered at zero frequency that is a character-
istic of a driven two-level system,30,31 additional weaker
triplets of peaks also occur at much higher frequencies.
We also investigate the back-action that the Cooper-pair
resonances would have on an oscillator coupled to the
SSET island. The asymmetry in the triplet of peaks cen-
tered on zero frequency means that the resonances could
be used to cool a mechanical resonator with frequency in
the MHz range though not all the way down to its ground
state.
The organization of this paper is as follows. In Sec.

II we describe our model of the SSET at low voltages,
discussing the origin of the Cooper-pair resonances and
the way in which the electromagnetic environment cou-
ples to the charge passing through the transistor. Then
in Sec. III we show how the Hamiltonian of the SSET
close to a Cooper-pair resonance can be transformed to
give a description in terms of a set of doublet states.
We then use standard approximations to derive a master
equation that describes the SSET charge variables in the
presence of dissipation due to the electromagnetic envi-
ronment. Next, in Sec. IV, we use the master equation to
derive the average current at the resonances. The charge
noise spectrum of the SSET is calculated in Sec. V and
the back-action is discussed. Finally we give our con-
clusions in Sec. VI. The appendix contains additional
details about certain aspects of the calculations.

II. MODEL SYSTEM

The SSET is shown schematically in Fig. 1. For sim-
plicity, we assume that the drain-source bias, V , is ap-
plied symmetrically and take the junctions to have equal
capacitances, CJ , and Josephson energies, EJ . A volt-
age, Vg, is applied to the gate which has capacitance, Cg,
(assumed to be much less than CJ). The electromagnetic
environment of the SSET is modeled by the impedance
Z0. We assume that the charging energy of the island,
EC = 4e2/2CΣ, with CΣ = 2CJ + Cg, is the dominant
energy scale in the system, so that EC ≫ kBT,EJ , where
T is the temperature. In this limit the SSET is best de-
scribed in terms of charge states, using the two quantum
numbers, n = NL − NR, the excess number of Cooper-
pairs on the island, and k = (NL + NR)/2, the average

FIG. 1: Circuit diagram of the SSET. The SSET island is
linked to the leads by the Josephson junctions, JL(R), and is
coupled to the voltage gate by the capacitance Cg . The bias
voltage, V , and impedances in the circuit, Z0, are taken to be
distributed symmetrically.

number of Cooper-pairs which have traveled through the
system, with NL(R) the number of Cooper-pairs which
have passed through the left(right)-hand junction of the
SSET.18,21,26 The large charging energy means that only
the two states with values of n closest to the gate induced
polarization charge, ng = CgVg/2e, have an appreciable
chance of being occupied.
The full Hamiltonian of the system can be written as,

H = HS +Hint +Henv, (1)

where Henv is the Hamiltonian of the electromagnetic
environment and the SSET Hamiltonian, HS , consists of
two parts HS = Hch +HJ . The charging Hamiltonian of
the island is

Hch =
∑

n=0,1

∑

k

[EC(n− ng)
2 − 2eV k] |n, k〉 〈n, k| , (2)

where we have taken 0 ≤ ng < 1, so only the states |0, k〉
and |1, k〉 need to be considered.
The states {|n, k〉} separate into two ladders:

{|0, k〉 , |1, k + 1/2〉} and {|0, k + 1/2〉 , |1, k〉}, where k is
now an integer. Josephson coupling links together adja-
cent members of the same ladder, but does not connect
states from different ladders. Assuming that quasiparti-
cle tunneling (which can link the ladders) is negligible,
we need only consider one of the sets of states. Choosing
the ladder {|0, k〉 , |1, k + 1/2〉}, the Josephson coupling
between states is given by,26,28

HJ = −J
∑

k

(|0, k〉 〈1, k + 1/2|+ |0, k〉 〈1, k − 1/2|+ h.c.),

(3)
where J = EJ/2.
We assume that the dominant source of dissipation and

decoherence of the SSET is the electromagnetic environ-
ment, modeled by the impedances in the leads connecting
it to the voltage sources. The impedances lead to fluctu-
ations in the drain-source voltage, δV , which couple to
the system operator, k, and give rise to the interaction
Hamiltonian,

Hint = −2ekδV. (4)
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FIG. 2: (Color online) Energy levels ofHch, (a) with V = V
(1)
res

at the p = 1 resonance and (b) with V & V
(0)
res for p = 0. The

dashed lines enclose the doublets: the energy levels which are
almost degenerate near the given resonance.

The effects of δV on the SSET are determined by the
spectrum of the voltage fluctuations which takes the
form,26,28,32–34

SV (ω) = 4e2
∫ ∞

−∞

〈δV (t)δV (0)〉eiωt dt,

=
8e2~ω

1− e−~ω/kBT
Re[ZT ], (5)

where ZT = (Z−1
0 − iωC2

J/CΣ)
−1 is the total effective

impedance seen at the junctions. At the low frequencies
which turn out to be relevant for the system dynam-
ics, ω ≪ (Re[ZT ]CJ)

−1, we can take Re[ZT] = Re[Z0].
We further assume that the embedding circuit provides
a low, real (Ohmic) impedance, Z0 = R ≪ RQ, such as
would be generated by a transmission line.11 Our descrip-
tion can easily be extended to take into account a finite
impedance in series with the gate voltage,28 but since we
take the limit Cg ≪ CJ this has a much weaker influence
and so we neglect it here.
The voltage dependence of the charging energy leads to

resonances where the eigenvalues of the charging Hamil-
tonian, Hch [Eq. 2], become degenerate. The charging
energies of the states |0, k〉 and |1, k + p+ 1/2〉, where
p = 0, 1, 2, . . ., become degenerate at particular val-

ues of the drain-source voltage, V = V
(p)
res , given by

(2p + 1)eV
(p)
res = EC(1 − 2ng). The energy levels near

the p = 0 and p = 1 resonances are illustrated in Fig. 2.
Close to degeneracies in the charging energy the

Josephson coupling becomes important and the pairs of
states |0, k〉 and |1, k + p+ 1/2〉 become strongly mixed
forming doublets. The interaction with the environment
can then cause the system to decay into the neighbor-
ing doublets with lower energy. Taken together the co-
herent evolution and decay form a cascade in which k
increases systematically and hence a dc current flows.
Away from the resonances the coherent evolution is sup-
pressed and decay processes cannot take the system to
ever higher k values so the current is also suppressed.
Thus, the degeneracies in the charging energy lead to
resonances in the current.17,19,26,28,35 The one exception
to this picture arises for the p = 0 resonance where one
can see from Fig. 2(b) that for voltages above resonance,
V > EC |1 − 2ng|/e, the system can move indefinitely to

larger values of k via incoherent decay processes alone
and hence in this case the resonance becomes strongly
broadened on one side.26,28

III. MASTER EQUATIONS

Having seen how and where the Cooper-pair reso-
nances arise, we now proceed to obtain a detailed quan-
titative description of the charge dynamics of the SSET
that includes the dissipation and decoherence induced
by the electromagnetic environment. As a first step we
use a unitary transformation method to derive an ef-
fective Hamiltonian which provides a systematic way of
accounting for the coherent effect of the Josephson cou-
pling between resonant states. We then proceed to derive
the master equation for the SSET tracing out the envi-
ronment using the Born-Markov approximations. The
resulting master equation can then be used to derive a
much simpler equation that describes just the SSET is-
land charge.

A. Effective Hamiltonian

Close to the p-th Cooper-pair resonance, and pro-
vided that the voltage, V , is not too small, the eigen-
values of the SSET charging Hamiltonian are grouped
into doublets, {|0, k〉 , |1, k + p+ 1/2〉}, with the spacing
between members of a given doublet much less than the
spacing between the doublets. The main effect of the
Josephson Hamiltonian will be to introduce couplings be-
tween states within each doublet. Since the full system
Hamiltonian cannot be diagonalized exactly, we treat the
Josephson coupling as a perturbation and use a unitary
transformation to derive an effective Hamiltonian which
takes into account the mixing it induces between states
within a doublet.29

We seek a unitary transformation, U , such that, H ′
S =

UHSU
† is block diagonal in the space of the doublets.

This transformation is found as a perturbation series in
J , and we keep only the leading order contributions (de-
tails are given in the appendix). This results in an effec-
tive system Hamiltonian which is block-diagonal in the
pairs of nearly-resonant states {|0, k〉 , |1, k + p+ 1/2〉}.
Each block takes the form,

H ′
k =

(

Ē −∆E Jp
Jp Ē +∆E

)

, (6)

where Ē = −2eV k is the average charging energy of the
resonant states, and Jp is the high order coupling between
the states. For p ≥ 1,

Jp = (−1)
p Jq

(

2eV
(p)
res

)2p

(p!)2
(7)
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where q = 2p + 1. For the case p = 0, Jp = J . The
splitting between resonant states, ∆E, is given by,

∆E =
EC(1− 2ng)− qeV

2
+

J2

eV
(p)
res

2q

q2 − 1
. (8)

The first term is the electrostatic energy difference be-
tween the states and the second term is a correc-
tion which arises at second order in the perturbation
calculation36. For p = 0 the second order correction is

given by J2/(eV
(0)
res ).

The block Hamiltonians are diagonalized by a rotation,
Uα = e−iσyα, where σy is the usual Pauli matrix, to give
the eigenstates of the doublets,

|a, k〉 = cosα |0, k〉+ sinα |1, k + (2p+1)/2〉 , (9a)

|b, k〉 = − sinα |0, k〉+ cosα |1, k + (2p+1)/2〉 , (9b)

and the corresponding eigenenergies, Ea,k = Ē − ∆E′,
Eb,k = Ē +∆E′, where α is defined by

sin 2α =
−Jp
∆E′

, (10a)

cos 2α =
∆E

∆E′
, (10b)

and the energy level splitting is

∆E′ = sgn(∆E)
√

∆E2 + J2
p , (11)

which changes sign at the resonance.
Note that the description of the system in terms of

doublets is only valid within a region around each reso-
nance. The spacing between energy levels in the doublet
should be much smaller than the spacing between the
doublets, |∆E′| ≪ eV .

B. Born-Markov description

We now use the block-diagonal form of the Hamilto-
nian to derive the master equation for the SSET. We
assume that the interaction between the SSET and the
bath is weak,32 R ≪ RQ, and that the bath has a suffi-
ciently dense spectrum of levels that the standard Born
and Markov approximations can be made.29

Written in terms of the eigenstates of the system
Hamiltonian, the Born-Markov master equation for the
components of the SSET density operator, σ, takes the
form,29

dσ̃µν

dt
=

sec
∑

µ′ν′

Rµνµ′ν′ σ̃µ′ν′ , (12)

where the tilde denotes the interaction picture and the
sum is over only the secular37 terms for which ωµν =
ωµ′ν′ , with ωµν the frequency difference between eigen-
states µ and ν. The coupling tensor Rµνµ′ν′ is given by

Rµνµ′ν′ = −

∫ ∞

0

dτ

[

g(τ)

(

δνν′

[

∑

n

k′µnk
′
nµ′eiωµ′nτ

]

− k′µµ′k′ν′νe
iωµ′µτ

)

+g(−τ)

(

δµµ′

[

∑

n

k′ν′nk
′
nνe

iωnν′τ

]

− k′µµ′k′ν′νe
iωνν′τ

)]

, (13)

where k′ = UkU † and g(τ) = 4(e/~)2〈δV (τ)δV (0)〉 is the
correlation function of the electromagnetic environment
whose properties were specified in Eq. (5).
The transformed operator k′ (given explicitly in the

appendix) takes the form of a power series in J ,

k′ = k(0) + k(1) + k(2) + . . . , (14)

and we proceed by expanding the terms of the form
k′µµ′k′νν′ in R up to second order in J . The zeroth

order term k
(0)
µµ′k

(0)
νν′ is diagonal in the charge state ba-

sis and generates dephasing of the charge states. For
states within the same doublet, this leads to dissipative
transitions between the eigenstates (intra-doublet transi-
tions). The next non-zero contribution comes from terms

of the form k
(1)
µµ′k

(1)
νν′ , which link states from a given dou-

blet with states in the nearest neighbor and next-nearest

neighbor doublets, leading to inter-doublet transitions.
The same generic description applies to all the resonances
with p ≥ 1, but for the p = 0 case the states in a given
doublet only couple to one other doublet leading to a
slightly different form for the master equation as we dis-
cuss below.

To calculate the inter-doublet terms we note that close
to resonance the inter-doublet transitions occur on a
much larger energy scale than the spacing between levels
in the doublet, peV ≫ ∆E′. This allows us to sim-
plify the calculation by ignoring the Jp terms in the
block-diagonal Hamiltonian [Eq. (6)] and treat the charge
states |n, k〉 as the eigenstates of the system. Thus, us-
ing the charge state basis, the inter-doublet contributions
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take the form

dσ̃0k,0k′

dt

∣

∣

∣

∣

inter

= ΓLσ̃1k+1/2,1k′+1/2 + ΓRσ̃1k−1/2,1k′−1/2

−Γ∆kσ̃0k,0k′ ,

(15a)

dσ̃1k+1/2,1k′+1/2

dt

∣

∣

∣

∣

inter

= −(ΓL + ΓR + Γ∆k)σ̃1k+1/2,1k′+1/2,

(15b)

dσ̃0k,1k′+1/2

dt

∣

∣

∣

∣

inter

= −

(

ΓL + ΓR

2
+ Γ∆k

)

σ̃0k,1k′+1/2,

(15c)

where we have assumed kBT ≪ peV and the dephasing
rate is given by

Γ∆k =
SV (0)

2~2
∆k2, (16)

with ∆k = k1 − k2 for σ̃ik1,jk2 . The transition rates at
the center of the resonance38 are given by

ΓL =

(

J

4peV
(p)
res

)2
SV (ωp)

~2
, (17)

ΓR =

(

J

4(p+ 1)eV
(p)
res

)2
SV (ωp+1)

~2
, (18)

with ωp = 2peV
(p)
res /~. For the p = 0 case there is

only one decay channel linking different doublets, and
the associated energy difference is 2eV . Thus, provided
2eV ≫ kBT,∆E′ the same set of inter-doublet terms is
obtained, but with ΓL = 0.
To calculate the terms in the master equation describ-

ing the intra-doublet transitions we need to use the full
eigenstates of the system [Eq. (9)] and take account of
the effects of the Jp terms in the Hamiltonian. The en-
ergy differences between the states within a doublet can
be much smaller than those between the doublets, and so
in this case we include the effects of a finite temperature.
This leads to the intra-doublet equations,

dσ̃ak,ak

dt

∣

∣

∣

∣

intra

= γbaσ̃bk,bk − γabσ̃ak,ak, (19a)

dσ̃bk,bk

dt

∣

∣

∣

∣

intra

= γabσ̃ak,ak − γbaσ̃bk,bk, (19b)

dσ̃ak,bk

dt

∣

∣

∣

∣

intra

= −

(

γab + γba
2

)

σ̃ak,bk, (19c)

where γij gives the transition rate between the states
|i, k〉 and |j, k〉 within the k-th doublet. These have the
form

γij =

(

2p+ 1

2

)2

cos2 α sin2 α
SV (ωij)

~2
, (20)

where ωab = −ωba = −2∆E′/~.
Finally, we transform the inter-doublet contributions

[Eq. (15)] into the eigenstate basis and combine them
with the intra-doublet terms [Eq. (19)] to obtain the full
master equations of the system. For sufficiently weak
dissipation, ΓL(R) ≪ |ωab|, it is possible to simplify the
master equation significantly by applying a further ro-
tating wave approximation (RWA). After this approxi-
mation the master equation takes the form,

dσ̃ak,ak′

dt
= Γp

aaσ̃ak1,ak′

1
+ Γp

baσ̃bk1,bk′

1

+ Γp+1
aa σ̃ak2,ak′

2
+ Γp+1

ba σ̃bk2,bk′

2
+ γ∆k

ba σ̃bk,bk′

− (Γp
ab + Γp

aa + Γp+1
ab + Γp+1

aa + γ∆k
ab + Γ∆k)σ̃ak,ak′ ,

(21a)

dσ̃bk,bk′

dt
= Γp

abσ̃ak1,ak′

1
+ Γp

bbσ̃bk1,bk′

1

+ Γp+1
ab σ̃ak2,ak′

2
+ Γp+1

bb σ̃bk2,bk′

2
+ γ∆k

ab σ̃ak,ak′

− (Γp
ba + Γp

bb + Γp+1
ba + Γp+1

bb + γ∆k
ba + Γ∆k)σ̃bk,bk′ ,

(21b)

dσ̃ak,bk′

dt
= −

(

Γp
aa + Γp

bb

2

)

σ̃ak1,bk′

1

−

(

Γp+1
aa + Γp+1

bb

2

)

σ̃ak2,bk′

2

−

(

ΓL + ΓR

2
+ γ∆k

coh + Γ∆k

)

σ̃ak,bk′ , (21c)

where k1 = k−p, k2 = k−p−1 and Γp
ij are the transition

rates between the states |i, k + p〉 → |j, k〉, which are
given by

Γp
aa = Γp

bb = ΓL cos2 α sin2 α, (22a)

Γp+1
aa = Γp+1

bb = ΓR cos2 α sin2 α, (22b)

Γp
ba = ΓL cos4 α, (22c)

Γp+1
ba = ΓR cos4 α, (22d)

Γp
ab = ΓL sin4 α, (22e)

Γp+1
ab = ΓR sin4 α. (22f)

We have also defined
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γ∆k
ij =

{

γij , ∆k = 0,
(

2p+1
2

)2
sin2 α cos2 αSV (0)

~2 , ∆k 6= 0,
(23)

γ∆k
coh =

{ γab+γba

2 , ∆k = 0,
(

2p+1
2

) [(

2p+1
2

)

(cos4 α+ sin4 α) + ∆k cos 2α
] SV (0)

~2 , ∆k 6= 0.
(24)

For the RWA to be valid we require that incoher-
ent decay rates are much smaller than the Bohr fre-
quency associated with the doublets, which, for p ≥ 1,
results in the condition ΓL ≪ 2|Jp|/~ (since ΓL is the
largest decay rate). From Eqs. (7) and (17), we find

that, ~ΓL/|Jp| ∝ (R/RQ)(eV
(p)
res /J)2p−1. By tuning the

gate voltage, V
(p)
res can take on any value in the range

0 < (2p+1)eV
(p)
res < EC , thus, for a given value of R, the

requirement that the RWA is valid puts a limit (which
becomes stricter as p increases) on the maximum volt-
age that can be considered. Our interest here is in the
regime where the SSET charge dynamics is largely coher-
ent, leading to sharp resonances in the current, and hence
we naturally focus on the regime where the RWA is valid.
Since these conditions can only be met in practice19,27,28

for the lower values of p, we will concentrate on the
p = 0, 1 resonances.

The master equations bear a strong resemblance to
those which describe the radiative cascade of quantum
optics.29 In the radiative cascade a laser field drives a
two-level atom and when the field is treated quantum
mechanically the eigenstates of the system are atom-
field hybrids (dressed states). Decay processes lead to
a cascade in which photons are emitted and the laser
state moves progressively towards lower photon numbers.
Analogously in the SSET the states {|a, k〉, |b, k〉} are
like the atom-laser dressed states, with the island charge
states playing the role of the atom and k like the state
of the laser. In this case decay processes generate a cas-
cade in which the system evolves towards states of ever
increasing k.

C. Effective two-level system

Although the full master equation for the SSET is
rather complicated, it is possible to derive a much simpler
set by tracing over the charges that have passed through
the SSET. Defining a set of reduced coherences,29

ρqij(t) =
∑

k

〈i, k + q|σ(t) |j, k〉 , (25)

and carrying out the trace over k, we obtain a much
simpler matrix equation,

ρ̇
q(t) = (2iqeV +M)ρq(t), (26)

where ρ
q = (ρqaa, ρ

q
bb, ρ

q
ab)

T . Within the RWA the form
of the matrix M is given by

M =





−(Γq + Γq
a) Γq

b 0
Γq
a −(Γq + Γq

b) 0
0 0 −(iωab + Γq

coh)



 ,

(27)
where Γq = Γ∆k=q and the other rates are given by,

Γq
a = (ΓL + ΓR) cos

4 α+ γq
ba, (28)

Γq
b = (ΓL + ΓR) sin

4 α+ γq
ab, (29)

Γq
coh =

(ΓL + ΓR)(1 + 2 cos2 α sin2 α)

2
+ γq

coh + Γq.

(30)

By taking q = 0 we obtain the equation which describes
the evolution of the island charge. The resulting mas-
ter equation describes a two-level system (TLS) which is
both driven and damped. This simple two-level descrip-
tion is all that is required to calculate the main charge
noise properties of the SSET.
The full density operator does not have a steady state,

the system cascades to increasing values of k as charge
tunnels though the transistor. The reduced equations
derived above, however, do have a well defined steady
state. All of the reduced coherences where q 6= 0 are

zero in the steady state, 〈ρq 6=0
ij 〉ss = 0. The q = 0 case

has the steady state: 〈ρaa(bb)〉ss = Γb(a)/(Γa + Γb), and

〈ρab〉ss = 0. Note that here and in what follows we drop
the superscripts on ρ and Γ for the case q = 0.

IV. AVERAGE CURRENT

As a first application of the master equation (21), we
calculate the steady state average current, 〈I〉ss, through
the transistor. The current is determined by the rate of
change of the number of Cooper-pairs which have crossed
the device,

〈I〉ss = 2e
d〈k′〉

dt
= 2eTr[k′σ̇]. (31)

We calculate only the dominant term which comes from
the lowest order part of the k′ expansion, k(0) = k, as the
next lowest order contribution (from k(1)) vanishes and
we neglect higher order contributions. The only non-zero
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FIG. 3: (Color online) Current-voltage characteristics of the
SSET in the vicinity of (a) the p = 0 resonance (b) the p = 1
resonance. The current is scaled by I0 = e(ΓL + ΓR) in each
case. The values of the other parameters are given in the
text. In (a) we also show in the dashed, red line the current
calculated using the full voltage dependence of the decay rate
ΓR and the Hamiltonian.

terms after performing the trace come from the dissipa-
tive parts of the diagonal master equations [Eqs. (21a)–
(21b)] which give rise to the incoherent transitions. Since
these terms only depend on the reduced coherences of the
system, the current reaches a well-defined steady-state in
the long time limit,

〈I〉ss = 2e
(

〈ρaa〉ss sin
2 α+ 〈ρbb〉ss cos

2 α
)

× (pΓL + (p+ 1)ΓR) . (32)

Within the regime where the RWA is valid, this matches
the results obtained previously18,21,26 using a rate equa-
tion approach and Fermi’s golden rule.
The current near the p = 0 and p = 1 resonances is

shown in Fig. 3 for the typical parameter values19,27,28

EC = 4EJ = 100µeV, T = 30mK, a resistance for the
embedding circuit R = 50Ω and we have set ng = 0.1
[we use these parameters throughout for the numerical
calculations]. The full lines in Fig. 3 show the current
calculated with the decay rates, Jp and the second order
correction to ∆E given by their on-resonance values.36,38

As the p = 0 resonance is very broad (in comparison to
the p = 1 resonance), we have also calculated the current
including the full voltage dependence of the relevant de-
cay rate and the Hamiltonian [dashed curve in Fig. 3(a)].
The two resonances show rather different characteris-

tics. The current around the p = 0 resonance is broad
and highly asymmetric. This is because in this case
purely dissipative processes can generate a dc current
for V > Vres (incoherent Cooper-pair tunneling

33) as can
be seen from the energy level diagram in Fig. 2(b). The
current for the p = 1 resonance is much closer to the stan-
dard Lorentzian form of a resonance, the small amount
of asymmetry still present arises from the intra-doublet
transitions. For V < Vres, relaxation between the lev-
els of the doublets (controlled by γab(ba)) hinders current
flow whilst for V > Vres it helps it. This leads to a small
asymmetry in the current as a function of voltage which
is only removed when the temperature is sufficiently high
such that γab ≃ γba and a Lorentzian shape is recovered.
Extending our calculation to include the regime where

the RWA is no longer valid, we find that the current peaks
at the resonances become suppressed. This is because
outside of the RWA the system is unable to build up the
coherence between charge states necessary for current to
flow. This is consistent with Ref. 28 where this effect was
studied in detail.

V. CHARGE NOISE SPECTRUM

We now turn to consider the noise properties of the
SSET close to the Cooper-pair resonances. The charge
noise spectrum provides a fingerprint of the subtle inter-
play of coherent dynamics and dissipation in the system
whilst also controlling the back-action that the SSET will
exert when it is used as a measuring device.
The charge noise spectrum is given by,

Snn(ω) =

∫ ∞

−∞

〈δn′(t)δn′(0)〉eiωtdt, (33)

where δn′ = n′−〈n′〉 is the fluctuating part of the trans-
formed island charge operator and the averages are taken
over the steady state. The operator n′ can be written as
a series expansion in terms of powers of J (as we did for
k′), n′ = n(0) + n(1) + . . ., as described in the appendix.
The dominant contribution to the spectrum comes from
the zeroth order terms in the expansion, n(0) = n, and
so we consider these terms first. The higher order terms
in n′ give rise to weaker features in the spectrum which
we go on to calculate in Sec. VC.

A. Triplet structure

The charge noise spectrum is readily obtained using
the quantum regression theorem29 which allows us to cal-
culate the behavior of 〈n(t)n(0)〉 for t > 0 by using the
equation of motion for 〈n(t)〉 with appropriately modified
initial conditions. The starting point for the calculation
is the effective master equation for the SSET charge state
[Eq. (26)] with q = 0.
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FIG. 4: (Color online) Charge noise spectrum as a function
of frequency and voltage around the (a) p = 0 and (b) p =
1 resonances. The resonances occur at the point where the
central peak disappears.

We begin by defining a series of projection operators

pij =
∑

k

|j, k〉 〈i, k| , (34)

with the property 〈pij〉 = 〈ρij〉ss which then allow us to
calculate the fluctuating part δpij = pij − 〈ρij〉ss. The
correlation function for the charge written in terms of the
projectors is,

〈δn(t)δn(0)〉 =
∑

i,j,l,m

nijnlm〈δpij(t)δplm(0)〉, (35)

where the matrix elements are given by the transfor-
mation of n into the eigenstate basis, naa = sin2 α,
nbb = cos2 α and nab = nba = sinα cosα.
Using the regression theorem and the initial conditions

for the projectors,

〈δpij(0)δplm(0)〉 = δim〈ρjl〉ss − 〈ρij〉ss〈ρlm〉ss, (36)

we obtain the spectrum,

Snn(ω) = 2〈ρaa〉ss〈ρbb〉ss(naa − nbb)
2 Γpop

ω2 + Γ2
pop

+ 2n2
ab

(

〈ρbb〉ssΓcoh

(ω − ωab)2 + Γ2
coh

+
〈ρaa〉ssΓcoh

(ω − ωba)2 + Γ2
coh

)

,

(37)

where Γpop = Γa + Γb. Examples of the spectrum as
a function of frequency and voltage around the p = 0

FIG. 5: (Color online) Charge noise, Snn, as a function of
∆E for (a) Ω = 100MHz and (b) Ω = 4GHz oscillator. Solid
(blue) lines are Snn(Ω), dashed (red) lines are Snn(−Ω). The
inset in (a) shows the region around the minimum where the
difference between the two curves is most pronounced.

and p = 1 resonances are shown in Fig. 4. In both
cases the spectrum consists of three Lorentzians. This
triplet structure is exactly what is expected for a coher-
ent TLS in the presence of dissipation.29,30 The central
peak around zero frequency arises due to incoherent tran-
sitions between eigenstates, its height is determined by
|naa − nbb|, the difference in average charge between the
|a〉 and |b〉 eigenstates. This peak disappears when the
system is tuned to resonance since the eigenstates are
equal mixtures of charge states.
The sidepeaks arise at ω = ±ωab due to coherent os-

cillations between the eigenstates. The heights of the
sidepeaks are controlled by the steady state populations
of the eigenstates, which is what provides the asymme-
try between the negative and positive frequency peaks,
and the width is given by the rate at which the coher-
ences decay, Γcoh [see Eq. (30)]. Note that the spacing
of the sidepeaks is much larger for p = 0, the splitting
Jp=0 ∼ 25GHz, compared to Jp=1 ∼ 1GHz for p = 1.
This means that finite temperature effects are not as im-
portant in the p = 0 resonance.

B. Back-action

We now consider the effect that the charge noise spec-
trum has on another system coupled to the SSET island.
For concreteness we consider the case of a resonator with
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a charge-position coupling,

Hc = λn(c+ c†), (38)

where c is the resonator lowering operator, and λ the
coupling strength. For weak coupling, and provided that
the resonator does not start to self-oscillate,10,13 linear
response theory can be used to calculate the effect of the
SSET on the resonator dynamics.11,39 This back-action of
the SSET on a resonator can be useful, providing in some
cases a way to cool the resonator10,12 whilst also provid-
ing a way of measuring the asymmetry in the SSET’s
noise properties.15

Within the linear response regime, the SSET acts on
the resonator like an additional thermal bath and its ef-
fect can be characterized by an effective damping, γBA,
and an effective thermal occupation number, n̄BA. For a
weakly damped resonator of frequency Ω, these are given
by11,40

γBA(Ω) = λ2 [Snn(Ω)− Snn(−Ω)] , (39)

n̄BA(Ω) =

[

Snn(Ω)

Snn(−Ω)
− 1

]−1

. (40)

Measurement of γBA and n̄BA allows both frequency
components of the charge noise spectrum, Snn(±Ω), to
be inferred. We will explore the back-action effect of the
SSET on resonators in two different regimes of frequency,
Ω = 100MHz and Ω = 4GHz, corresponding to different
physical realizations of the resonator. The 100MHz fre-
quency is typical of a nanomechanical resonator41 whilst
the 4GHz frequency matches that of superconducting
striplines42 or LC resonators.15 We focus on the p = 1
resonance from now on since the sidepeaks of the p = 0
resonance are too wide to have any significant effect on
even a high frequency LC oscillator.
Figure 5 shows the charge noise as a function of the

detuning from resonance for Ω = ±100MHz and Ω =
±4GHz. At 100MHz the spectrum is very symmetric,
Snn(Ω) ≈ Snn(−Ω) because the sidepeaks have very little
weight at this frequency. In this case maximum asymme-
try is achieved at the center of the resonance (∆E = 0)
when the spacing of the outer peaks is minimized. In
contrast, at 4GHz the spectrum is highly asymmetric as
here the sidepeaks cross through this frequency.
The curves for Snn(±Ω) are not simply reflections of

each other, as would be expected for a classically driven
TLS30 or other resonances in the SSET.10,12 This asym-
metry occurs for the same reason that the current peak is
not a simple Lorentzian; the intra-doublet decay rates are
not symmetric between ±∆E. Similar effects are seen in
a driven TLS when31 the temperature dependence of the
relaxation rate is taken into account. The behavior of
the driven TLS where Snn(Ω,∆E) = Snn(−Ω,−∆E) is
recovered in the high temperature limit where the intra-
doublet transition is saturated, γab = γba. We can un-
derstand how the intra-doublet decays lead to this asym-
metric behavior in terms of effective temperatures. The

intra-doublet decays drive the eigenstate populations to-
wards an equilibrium distribution which corresponds to
the temperature of the bath, this is constant and al-
ways positive. However, the inter-doublet rates drive the
SSET to an equilibrium point whose effective tempera-
ture varies strongly with ∆E and, in particular, changes
sign when ∆E = 0. The competition between these two
behaviors causes the asymmetry in this system.10,12

In Fig. 6 we plot the damping, γBA, for Ω = 100MHz
and Ω = 4GHz. The small asymmetry in the low fre-
quency noise spectrum gives the damping a very small
magnitude, but for the high frequency resonator it is
much larger. The lack of symmetry in the noise spec-
trum, Snn(Ω,∆E) 6= Snn(−Ω,−∆E), leads to quite dif-
ferent magnitudes for the damping at ±∆E, with the
anti-damping peak suppressed by the intra-doublet de-
cays for both the high and low frequency cases.
When a resonator is coupled to the SSET its steady

state is determined by a combination of the back-action
of the SSET and the influence of the rest of the res-
onator’s surroundings which are in thermal equilibrium
at a temperature T , and give rise to a damping rate γext.
The overall occupation number of the resonator, ntot, is
given by the average,30,40,43

ntot =
γextn+ γBAn̄BA

γext + γBA
, (41)

where n = (exp(~Ω/kBT )−1)−1. Thus at a given T , the
SSET can be used to cool the resonator provided pro-
vided n̄BA < n. Such cooling is important for nanome-
chanical resonators with frequencies in the MHz range
as even at temperatures T below 100mK they will still
contain a large number of thermal quanta.8,30,40,43

Figures 6(c) and 6(d) show the behavior of n̄BA (plot-
ted as 1/n̄BA to emphasize the behavior near mini-
mas) around the resonance at 100MHz and 4GHz. For
Ω = 100MHz, the minimum in n̄BA occurs when the sys-
tem is tuned directly to resonance where the central peak
in the noise spectrum vanishes. For the typical device
parameters we have chosen (given in Sec. IV), we find
a minimum of n̄BA ≈ 37 which corresponds through the
expression n̄BA = (exp(~Ω/kBTBA)−1)−1 to an effective
temperature TBA ≈ 29mK, only slightly lower than the
bath temperature, T = 30mK. This result is, however,
dependent on T through the intra-doublet rates and the
relative cooling potential does improve at higher bath
temperatures, for example TBA ≈ 37mK for T = 50mK
and TBA ≈ 50mK for T = 80mK.
The main problem with using the SSET tuned to a

Cooper-pair resonance to cool a mechanical resonator is
the spacing of the peaks in the noise spectrum. For ef-
fective cooling, we need the frequency of the resonator
to match the separation of the peaks. This cannot be
achieved at low frequencies in this device since the min-
imum intra-doublet spacing (and hence minimum peak
splitting) 2Jp/~ is in the GHz range. Trying to engineer
a device where this splitting was much smaller would
lead to a deterioration in the effectiveness of the cooling
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FIG. 6: Back-action damping, γBA [(a)-(b)] and effective occupation number, n̄BA [(c)-(d)] of an oscillator weakly coupled to
the SSET. (a) and (c) are for Ω = 100MHz, (b) and (d) for Ω = 4GHz.

because of the effect of thermal noise on the SSET it-
self: the asymmetry in the peaks would be reduced and
they would also be broadened (this would take the sys-
tem outside both the regime where the RWA is valid and
also the resolved sideband limit where optimal cooling
can be achieved40,43). In contrast, for a driven TLS30

the potential for cooling is much greater as it is possible
to tune the drive (which corresponds to the Josephson
coupling in our system) and it is the difference between
this frequency and the level separation of the TLS(both
of which can be ≫ kBT/~) that sets the spacing of the
sidepeaks in the corresponding noise spectrum.

C. Higher order spectral features

The full charge noise spectrum also contains contribu-
tions at other frequencies far from ω = 0. These arise
from the higher order contributions in the perturbative
expansion of n′. In this section we investigate the most
significant of these high order terms, which arises from
the 〈n(1)(t)n(1)(0)〉 term in the expansion. The form of
n(1) is calculated in the appendix,

n(1) = −
∑

k

J

2peV
|0, k〉 〈1, k + 1/2|

+
J

2(p+ 1)eV
|0, k〉 〈1, k − 1/2|+ h.c., (42)

for p ≥ 1, in the case p = 0 the first term is not
present. When this is transformed to the eigenstate ba-

sis it contains terms proportional to |i, k〉 〈j, k + q|, with
q = ±p,±(p+1), for p = 0 only terms q = ±1 are present.
As an example we calculate the corresponding spectrum,

Sn(1)n(1)(ω) =

∫ ∞

−∞

〈n(1)(t)n(1)(0)〉eiωtdt, (43)

for the p = 1 resonance (note that in the steady state
〈n(1)〉 = 0 and so we do not need to work with the opera-
tor δn(1)). To do this we use the regression theorem and
the reduced master equations [Eq. (26)] with the values
of q = ±1,±2.
We find that the spectrum consists of triplets of peaks

centered on the frequencies ~ω = 2qeV with the side-
peaks separated by the intra-doublet level spacing in each
case. The triplets with q = ±1 and q = ±2 simply differ
by a constant prefactor and a slight modification to the
decay rates and so we concentrate here on just the q = ±1
case. The spectrum around ~ω = ±2eV is shown in Figs.
7(a) and 7(b). The peaks in this part of the spectrum
arise from first order Josephson coupling between states
at the relevant frequency differences. We show the rele-
vant transitions and their frequencies in Fig. 7(c). Since
this spectrum occurs at higher order in the perturbation
theory the magnitude of Sn(1)n(1) is much smaller than
it was for the zeroth order spectrum (Fig. 4). The cen-
tral peak in both Figs. 7(a) and 7(b) is the same because
the transitions which give rise to these peaks always link
corresponding states within the two doublets (i.e. an a
state with an a state or a b state with a b) for both the
positive and negative frequency processes as shown in
Fig. 7(c). However, the sidepeaks of the two triplets are
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FIG. 7: (Color online) Sn(1)n(1)(ω) in the vicinity of the p = 1 resonance (a) and (b) show the spectrum at frequencies around
~ω = ±2eV respectively. A schematic illustration of the processes giving rise to the spectral features is shown in (c). This
illustrates the inter-doublet transitions and the corresponding frequencies of the features they give rise to.

quite different. The weights of the sidepeaks are propor-
tional to |nq

ij |
2〈ρii〉ss where nq

ij =
∑

k 〈i, k + q|n(1) |j, k〉

and i(j) is the initial (final) state for the relevant tran-
sition. This means that each of the four sidepeaks has a
different combination of matrix element and population.
Far from the resonance only one of the three peaks is

present in each triplet. In this region the eigenstates are
very close to the charge states and since the Josephson
effect only couples the states |0, k〉 and |1, k + 1/2〉 we find
that each state is only coupled to one other. Very close
to the resonance all of the peaks appear, the eigenstates
are mixtures of charge states and so transitions between
all of the states in the doublets can occur.
The features seen in this part of the spectrum arise

because the system is not as simple as a true TLS, they
arise from couplings between different doublets and hence
require more than two energy levels. The frequencies
at which the features in part of the spectrum occur,
∼ 100GHz, are much larger than the range that can be
probed with a stripline resonator. However, it might be
possible to observe the noise at this frequency in a dif-
ferent kind of experiment in which the SSET is instead
coupled to another mesoscopic conductor such as a SIS
junction.27,44

VI. CONCLUSIONS

We have analyzed the quantum dynamics of the SSET
tuned close to Cooper-pair resonances. An effective
Hamiltonian for the SSET was derived. this exploits
the separation of the energy levels into doublets and

accounts for the Josephson coupling between resonant
states. We then derived the master equations for the
system including the effect of the electromagnetic envi-
ronment using the Born-Markov approximations. We cal-
culated the current in the vicinity of the resonances and
find, in accord with previous studies, strong peaks at the
resonances.

Calculating the charge noise spectrum in the vicinity of
a resonance, we found that the spectrum is dominated by
a triplet of peaks centered on zero frequency: a structure
typical of a driven, damped, TLS. However, the detailed
form of the triplet in this case differed in important re-
spects from a standard classically driven TLS because of
the intra-doublet transitions. An experimentally realiz-
able method of measuring the quantum noise spectrum
is to couple the SSET to a resonator and measure the
back-action. Using a linear response approach we found
that the effects of the intra-doublet relaxation can be
observed in the asymmetry of the damping rate, γBA,
and effective occupation, n̄BA, of the resonator. It would
also be possible to cool a low frequency oscillator using
a Cooper-pair resonance, though not to the ground state
as the large separation of the sidepeaks in the noise spec-
trum, 2Jp/~, strongly limits the minimum occupation
number that could be achieved. We also carried out a
detailed calculation of the higher order triplet features
that arise in the charge noise spectrum. These features
occur because of the Josephson coupling between differ-
ent doublets.
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Appendix A: Transformations

1. Transforming the Hamiltonian

We begin with the system Hamiltonian HS = Hch +
HJ as defined in Eqs. (2) and (3). We find a unitary
transformation, H ′ = UHU † (we drop the subscript S
in this appendix), such that H ′ only contains diagonal
elements and those which couple resonant states. To do
this we define the projector onto the k-th doublet as

Pk = |0, k〉 〈0, k|+ |1, k + p+ 1/2〉 〈1, k + p+ 1/2| , (A1)

then the condition onH ′ above becomes PkH
′Pk′′ = 0 for

k 6= k′′. We then write the transformation as29 U = eiS

with S = S† and treat HJ as a perturbation. This allows
us to write a series expansion for S in terms of J ,

S = S(0) + JS(1) + J2S(2) + . . . , (A2)

There are infinitely many transformations which satisfy
the condition on H ′ and so to uniquely specify U we
choose that S should not have matrix elements within
the doublet, PkSPk = 0. We note that S(0) = 0, since
for the case J = 0 we need no transformation. This then
allows us to find the transformed form of the Hamiltonian
as

H ′ = Hch +HJ + [iJS(1), Hch] + [iJS(1), HJ ]

+ [iJ2S(2), Hch] +
1

2!

[

iJS(1), [iJS(1), Hch]
]

+ . . . ,

(A3)

which we can then write as a power series

H ′ = H(0) +H(1) +H(2) + . . . , (A4)

where we have grouped terms by order in J ;

H(0) = Hch, (A5a)

H(1) = HJ + [iJS(1), Hch], (A5b)

H(2) = [iJS(1), HJ ] + [iJ2S(2), Hch]

+
1

2!

[

iJS(1), [iJS(1), Hch]
]

.
(A5c)

These can then be used to construct the expression for S
term by term and so build up the effective Hamiltonian.

As an example we give the calculation of S(1). We begin
by noting that PkH

(n)Pk′′ = 0 for all n and k 6= k′′ which
gives,

0 = PkHJPk′′ + Pk(iJS
(1)Hch −HchiJS

(1))Pk′′ , (A6)

from which we can calculate the matrix elements of iS(1)

as

〈0, k| iS(1) |1, k + 1/2〉 = −
J

2peV
= G1, (A7)

〈0, k| iS(1) |1, k − 1/2〉 = −
J

2(p+ 1)eV
= −G2, (A8)

and the obvious conjugates. G1 and G2 then become
the natural small parameters of the perturbation theory.
These expressions can then be used to calculate S(2) and
so on. This allows the transformed Hamiltonian to be
found up to any order, for example we find that the sec-
ond order corrections to the diagonal elements are given
by

〈0, k|H(2) |0, k〉 = −
J2

eV

2q

q2 − 1
. (A9)

We also need to be able to calculate the off-diagonal cou-
pling between resonant states, Jp. This appears to or-
der 2p + 1 in the perturbation expansion. The method
outlined above becomes very cumbersome at high orders
and so to calculate Jp for higher orders we introduce the
level-shift operator26,29

R(z) = HJ +HJ
Qk

z −Hch
HJ

+HJ
Qk

z −Hch
HJ

Qk

z −Hch
HJ + . . . , (A10)

where Qk = 1 − Pk. Which then allows us to calculate
Jp = 〈0, k|R(Ē) |1, k + p+ 1/2〉. This gives the expres-
sion found in Eq. (7). However, we have checked explic-
itly that this approach gives the same expression for Jp=1

(the highest order used in the main text) as that obtained
using the perturbation expansion.

2. The transformed operators

We also need to transform the operators k and n. To
illustrate the method we give an explicit calculation of
k′. This is done in exact analogy with the calculation of
H ′. We first write k′ as a power series,

k′ = k(0) + k(1) + k(2) + . . . , (A11)

where,

k(0) = k, (A12a)

k(1) = [iJS(1), k], (A12b)

k(2) = [iJ2S(2), k] +
1

2!

[

iJS(1), [iJS(1), k]
]

, (A12c)
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which then allow us to calculate k(1) as

k(1) =
1

2

∑

k

G1 |0, k〉 〈1, k + 1/2|

+G2 |0, k〉 〈1, k − 1/2|+ h.c., (A13)

and k(2) is given by

k(2) =
(2p+ 1)G1G2

2

∑

k

(|0, k〉 〈0, k + 1| − |0, k〉 〈0, k − 1|+ h.c.)

+ (G2
1 +G2

2)
∑

k

(|1, k + 1/2〉 〈1, k + 1/2| − |0, k〉 〈0, k|). (A14)

A similar calculation can be performed to calculate the
power series for n′ = n(0) + n(1) + n(2) + . . ., and we find
n0 = n,

n(1) =
∑

k

G1 |0, k〉 〈1, k + 1/2|−G2 |0, k〉 〈1, k − 1/2|+h.c.,

(A15)

n(2) = G1G2

∑

k

(|0, k〉 〈0, k + 1| − |0, k〉 〈0, k − 1|+ h.c)

+ (G2
1 +G2

2)
∑

k

(|1, k + 1/2〉 〈1, k + 1/2| − |0, k〉 〈0, k|).

(A16)
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