550 research outputs found

    Preserved Haptic Shape Processing after Bilateral LOC Lesions.

    Get PDF
    UNLABELLED: The visual and haptic perceptual systems are understood to share a common neural representation of object shape. A region thought to be critical for recognizing visual and haptic shape information is the lateral occipital complex (LOC). We investigated whether LOC is essential for haptic shape recognition in humans by studying behavioral responses and brain activation for haptically explored objects in a patient (M.C.) with bilateral lesions of the occipitotemporal cortex, including LOC. Despite severe deficits in recognizing objects using vision, M.C. was able to accurately recognize objects via touch. M.C.\u27s psychophysical response profile to haptically explored shapes was also indistinguishable from controls. Using fMRI, M.C. showed no object-selective visual or haptic responses in LOC, but her pattern of haptic activation in other brain regions was remarkably similar to healthy controls. Although LOC is routinely active during visual and haptic shape recognition tasks, it is not essential for haptic recognition of object shape. SIGNIFICANCE STATEMENT: The lateral occipital complex (LOC) is a brain region regarded to be critical for recognizing object shape, both in vision and in touch. However, causal evidence linking LOC with haptic shape processing is lacking. We studied recognition performance, psychophysical sensitivity, and brain response to touched objects, in a patient (M.C.) with extensive lesions involving LOC bilaterally. Despite being severely impaired in visual shape recognition, M.C. was able to identify objects via touch and she showed normal sensitivity to a haptic shape illusion. M.C.\u27s brain response to touched objects in areas of undamaged cortex was also very similar to that observed in neurologically healthy controls. These results demonstrate that LOC is not necessary for recognizing objects via touch

    Home Program of Hip Abductor Exercises: Effect on Knee Joint Loading, Strength, Function and Pain in Persons with Knee Osteoarthritis

    Get PDF
    Background Hip abductor muscle weakness may result in impaired frontal-plane pelvic control during gait, leading to greater medial compartment loading in people with knee osteoarthritis (OA). Objective This study investigated the effect of an 8-week home strengthening program for the hip abductor muscles on knee joint loading (measured by the external knee adduction moment during gait), strength (force-generating capacity), and function and pain in individuals with medial knee OA. Design The study design was a nonequivalent, pretest-posttest, control group design. Setting Testing was conducted in a motor performance laboratory. Patients An a priori sample size calculation was performed. Forty participants with knee OA were matched for age and sex with a control group of participants without knee OA. Intervention Participants with knee OA completed a home hip abductor strengthening program. Measurements Three-dimensional gait analysis was performed to obtain peak knee adduction moments in the first 50% of the stance phase. Isokinetic concentric strength of the hip abductor muscles was measured using an isokinetic dynamometer. The Five-Times-Sit-to-Stand Test was used to evaluate functional performance. Knee pain was assessed with the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Results Following the intervention, the OA group demonstrated significant improvement in hip abductor strength, but not in the knee adduction moment. Functional performance on the sit-to-stand test improved in the OA group compared with the control group. The OA group reported decreased knee pain after the intervention. Limitations Gait strategies that may have affected the knee adduction moment, including lateral trunk lean, were not evaluated in this study. Conclusions Hip abductor strengthening did not reduce knee joint loading but did improve function and reduce pain in a group with medial knee OA

    Stacked Packaging Laminar-Convection-Cooled Printed Circuit Using the Entropy Generation Minimization Method

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76567/1/AIAA-30451-562.pd

    Heat Transfer Analysis of MHD Water Functionalized Carbon Nanotube Flow over a Static/Moving Wedge

    Get PDF
    The MHD flow and heat transfer from water functionalized CNTs over a static/moving wedge are studied numerically. Thermal conductivity and viscosity of both single and multiple wall carbon nanotubes (CNTs) within a base fluid (water) of similar volume are investigated to determine the impact of these properties on thermofluid performance. The governing partial differential equations are converted into nonlinear, ordinary, and coupled differential equations and are solved using an implicit finite difference method with quasi-linearization techniques. The effects of volume fraction of CNTs and magnetic and wedge parameters are investigated and presented graphically. The numerical results are compared with the published data and are found to be in good agreement. It is shown that the magnetic field reduces boundary layer thickness and increases skin friction and Nusselt numbers. Due to higher density and thermal conductivity, SWCNTs offer higher skin friction and Nusselt numbers

    Synthesis and Luminescence Modulation of Pyrazine-Based Gold(III) Pincer Complexes

    Get PDF
    The first examples of pyrazine-based gold(III) pincer complexes have been synthesized; their intense photoemissions can be modified by interactions with the non-coordinating pyrazine-N atom. Luminescence modulation is possible without the need for altering the ligand framework. Emissions shift from red (77 K) to blue (298 K) due to thermally activated delayed fluorescence (TADF

    Fluid Flow Around and Heat Transfer from Elliptical Cylinders: Analytical Approach

    Get PDF
    An integral method of boundary-layer analysis is employed to derive closed-form expressions for the calculation of total drag and average heat transfer for flow across an elliptical cylinder under isothermal and isoflux thermal boundary conditions. The Von Kármán-Pohlhausen integral method is used to solve the momentum and energy equations for both thermal boundary conditions. A fourth-order velocity profile in the hydrodynamic boundary layer and a third-order temperature profile in the thermal boundary layer are used. The present results are in good agreement with existing experimental/numerical data and, in the limiting cases, can be used for circular cylinders and finite plates. = complete elliptic integral of second kind e = eccentricity

    Counting on the motor system: Rapid action planning reveals the format- and magnitude-dependent extraction of numerical quantity

    Get PDF
    Symbolic numbers (e.g., 2 ) acquire their meaning by becoming linked to the core nonsymbolic quantities they represent (e.g., two items). However, the extent to which symbolic and nonsymbolic information converges onto the same internal core representations of quantity remains a point of considerable debate. As nearly all previous work on this topic has employed perceptual tasks requiring the conscious reporting of numerical magnitudes, here we question the extent to which numerical processing via the visual-motor system might shed further light on the fundamental basis of how different number formats are encoded.We show, using a rapid reaching task and a detailed analysis of initial arm trajectories, that there are key differences in how the quantity information extracted from symbolic Arabic numerals and nonsymbolic collections of discrete items are used to guide action planning. In particular, we found that the magnitude derived from discrete dots resulted in movements being biased by an amount directly proportional to the actual quantities presented whereasthe magnitude derived from numerals resulted in movements being biased only by the relative (e.g., larger than) quantities presented. In addition, we found that initial motor plans were more sensitive to changes in numerical quantity within small (1-3) than large (5-15) number ranges, irrespective of their format (dots or numerals). In light of previous work, our visual-motor results clearly show that the processing of numerical quantity information is both format and magnitude dependent. © 2014 ARVO
    corecore