379 research outputs found

    Monstrous branes

    Full text link
    We study D-branes in the bosonic closed string theory whose automorphism group is the Bimonster group (the wreath product of the Monster simple group with Z_2). We give a complete classification of D-branes preserving the chiral subalgebra of Monster invariants and show that they transform in a representation of the Bimonster. Our results apply more generally to self-dual conformal field theories which admit the action of a compact Lie group on both the left- and right-moving sectors.Comment: 31 pages, references adde

    Light-like Big Bang singularities in string and matrix theories

    Full text link
    Important open questions in cosmology require a better understanding of the Big Bang singularity. In string and matrix theories, light-like analogues of cosmological singularities (singular plane wave backgrounds) turn out to be particularly tractable. We give a status report on the current understanding of such light-like Big Bang models, presenting both solved and open problems.Comment: 20 pages, invited review for Class. Quant. Grav; v3: section 2.3 shortened, discussion on DLCQ added in section 3.1, published versio

    Gravitational infall in the hard wall model

    Full text link
    An infalling shell in the hard wall model provides a simple holographic model for energy injection in a confining gauge theory. Depending on its parameters, a scalar shell either collapses into a large black brane, or scatters between the hard wall and the anti-de Sitter boundary. In the scattering regime, we find numerical solutions that keep oscillating for as long as we have followed their evolution, and we provide an analytic argument that shows that a black brane can never be formed. This provides examples of states in infinite-volume field theory that never thermalize. We find that the field theory expectation value of a scalar operator keeps oscillating, with an amplitude that undergoes modulation.Comment: 7 pages, 4 figure

    Quantum evolution across singularities: the case of geometrical resolutions

    Full text link
    We continue the study of time-dependent Hamiltonians with an isolated singularity in their time dependence, describing propagation on singular space-times. In previous work, two of us have proposed a "minimal subtraction" prescription for the simplest class of such systems, involving Hamiltonians with only one singular term. On the other hand, Hamiltonians corresponding to geometrical resolutions of space-time tend to involve multiple operator structures (multiple types of dependence on the canonical variables) in an essential way. We consider some of the general properties of such (near-)singular Hamiltonian systems, and further specialize to the case of a free scalar field on a two-parameter generalization of the null-brane space-time. We find that the singular limit of free scalar field evolution exists for a discrete subset of the possible values of the two parameters. The coordinates we introduce reveal a peculiar reflection property of scalar field propagation on the generalized (as well as the original) null-brane. We further present a simple family of pp-wave geometries whose singular limit is a light-like hyperplane (discontinuously) reflecting the positions of particles as they pass through it.Comment: 25 pages, 1 figur

    D-Brane Potentials from Multi-Trace Deformations in AdS/CFT

    Full text link
    It is known that certain AdS boundary conditions allow smooth initial data to evolve into a big crunch. To study this type of cosmological singularity, one can use the dual quantum field theory, where the non-standard boundary conditions are reflected by the presence of a multi-trace potential unbounded below. For specific AdS_4 and AdS_5 models, we provide a D-brane (or M-brane) interpretation of the unbounded potential. Using probe brane computations, we show that the AdS boundary conditions of interest cause spherical branes to be pushed to the boundary of AdS in finite time, and that the corresponding potential agrees with the multi-trace deformation of the dual field theory. Systems with expanding spherical D3-branes are related to big crunch supergravity solutions by a phenomenon similar to geometric transition.Comment: 26 pages, 3 figures, v4: a few typos fixed

    One-Loop Effect of Null-Like Cosmology's Holographic Dual Super-Yang-Mills

    Get PDF
    We calculate the 1-loop effect in super-Yang-Mills which preserves 1/4-supersymmetries and is holographically dual to the null-like cosmology with a big-bang singularity. Though the bosonic and fermionic spectra do not agree precisely, we do obtain vanishing 1-loop vacuum energy for generic warped plane-wave type backgrounds with a big-bang singularity. Moreover, we find that the cosmological "constant" contributed either by bosons or fermions is time-dependent. The issues about the particle production of some background and about the UV structure are also commented. We argue that the effective higher derivative interactions are suppressed as long as the Fourier transform of the time-dependent coupling is UV-finite. Our result holds for scalar configurations that are BPS but with arbitrary time-dependence. This suggests the existence of non-renormalization theorem for such a new class of time-dependent theories. Altogether, it implies that such a super-Yang-Mills is scale-invariant, and that its dual bulk quantum gravity might behave regularly near the big bang.Comment: 20 pages, v2 add comments and references, v3 clarify BPS condition & add new discussion on particle production and UV structure, v4&v5 minor changes, final to JHE

    The non-Abelian gauge theory of matrix big bangs

    Full text link
    We study at the classical and quantum mechanical level the time-dependent Yang-Mills theory that one obtains via the generalisation of discrete light-cone quantisation to singular homogeneous plane waves. The non-Abelian nature of this theory is known to be important for physics near the singularity, at least as far as the number of degrees of freedom is concerned. We will show that the quartic interaction is always subleading as one approaches the singularity and that close enough to t=0 the evolution is driven by the diverging tachyonic mass term. The evolution towards asymptotically flat space-time also reveals some surprising features.Comment: 29 pages, 8 eps figures, v2: minor changes, references added: v3 small typographical changes

    Inhomogeneous Thermalization in Strongly Coupled Field Theories

    Full text link
    To describe theoretically the creation and evolution of the quark-gluon plasma, one typically employs three ingredients: a model for the initial state, non-hydrodynamic early time evolution, and hydrodynamics. In this paper we study the non-hydrodynamic early time evolution using the AdS/CFT correspondence in the presence of inhomogeneities. We find that the AdS description of the early time evolution is well-matched by free streaming. Near the end of the early time interval where our analytic computations are reliable, the stress tensor agrees with the second order hydrodynamic stress tensor computed from the local energy density and fluid velocity. Our techniques may also be useful for the study of far-from-equilibrium strongly coupled systems in other areas of physics.Comment: 5 pages, 3 figures; v2: minor clarifications and reference adde

    Inhomogeneous holographic thermalization

    Get PDF
    The sudden injection of energy in a strongly coupled conformal field theory and its subsequent thermalization can be holographically modeled by a shell falling into anti-de Sitter space and forming a black brane. For a homogeneous shell, Bhattacharyya and Minwalla were able to study this process analytically using a weak field approximation. Motivated by event-by-event fluctuations in heavy ion collisions, we include inhomogeneities in this model, obtaining analytic results in a long wavelength expansion. In the early-time window in which our approximations can be trusted, the resulting evolution matches well with that of a simple free streaming model. Near the end of this time window, we find that the stress tensor approaches that of second-order viscous hydrodynamics. We comment on possible lessons for heavy ion phenomenology.Comment: 53 pages, 10 figures; v2: references adde

    Effective Dynamics of the Matrix Big Bang

    Full text link
    We study the leading quantum effects in the recently introduced Matrix Big Bang model. This amounts to a study of supersymmetric Yang-Mills theory compactified on the Milne orbifold. We find a one-loop potential that is attractive near the Big Bang. Surprisingly, the potential decays very rapidly at late times, where it appears to be generated by D-brane effects. Usually, general covariance constrains the form of any effective action generated by renormalization group flow. However, the form of our one-loop potential seems to violate these constraints in a manner that suggests a connection between the cosmological singularity and long wavelength, late time physics.Comment: 22 pages, LaTeX; some minor changes; an improved discussion of the potentia
    • …
    corecore