162 research outputs found
Personalised therapy in follicular lymphoma - is the dial turning?
Follicular lymphoma is the most common indolent lymphoma accounting for approximately 20%–25% of all new non-Hodgkin lymphoma diagnoses in western countries. Whilst outcomes are mostly favorable, the spectrum of clinical phenotypes includes high-risk groups with significantly inferior outcomes. This review discusses recent updates in risk stratification and treatment approaches from upfront treatment for limited and advanced stage follicular lymphoma to the growing options for relapsed, refractory disease with perspectives on how to approach this from a personalized lens. Notable gaps remain on how one can precisely and prospectively select optimal treatment for patients based on varying risks, with an anticipation that an increased understanding of the biology of these different phenotypes and increasing refinement of imaging- and biomarker-based tools will, in time, allow these gaps to be closed
Mutation update for the GPC3 gene involved in Simpson-Golabi-Behmel syndrome and review of the literature
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked multiple congenital anomalies and overgrowth syndrome caused by a defect in the glypican-3 gene (GPC3). Until now, GPC3 mutations have been reported in isolated cases or small series and the global genotypic spectrum of these mutations has never been delineated. In this study, we review the 57 previously described GPC3 mutations and significantly expand this mutational spectrum with the description of 29 novel mutations. Compiling our data and those of the literature, we provide an overview of 86 distinct GPC3 mutations identified in 120 unrelated families, ranging from single nucleotide variations to complex genomic rearrangements and dispersed throughout the entire coding region of GPC3. The vast majority of them are deletions or truncating mutations (frameshift, nonsense mutations) predicted to result in a loss-of-function. Missense mutations are rare and the two which were functionally characterized, impaired GPC3 function by preventing GPC3 cleavage and cell surface addressing respectively. This report by describing for the first time the wide mutational spectrum of GPC3 could help clinicians and geneticists in interpreting GPC3 variants identified incidentally by high-throughput sequencing technologies and also reinforces the need for functional validation of non-truncating mutations (missense, in frame mutations, duplications)
Charge-radius change and nuclear moments in the heavy tin isotopes from laser spectroscopy: Charge radius of Sn
NESTER ACCLaser spectroscopy measurements have been carried out on the neutron-rich tin isotopes with the COMPLIS experimental setup. Using the optical transition, hyperfine spectra of Sn and were recorded for the first time. The nuclear moments and the mean square charge radius variation (\delta, the absolute charge radii of these isotopes were deduced in particular that of the doubly magic Sn nucleus. The comparison of the results with several mean-field-type calculations have shown that dynamical effects play an important role in the tin isotopes
Release properties of UC and molten U targets
The release properties of UC and molten U thick targets associated with a Nier- Bernas ion source have been studied. Two experimental methods are used to extract the release time. Results are presented and discussed for Kr, Cd, I and Xe
Integrative analysis of a phase 2 trial combining lenalidomide with CHOP in angioimmunoblastic T-cell lymphoma.
Angioimmunoblastic T-cell lymphoma (AITL) is a frequent T-cell lymphoma in the elderly population that has a poor prognosis when treated with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) therapy. Lenalidomide, which has been safely combined with CHOP to treat B-cell lymphoma, has shown efficacy as a single agent in AITL treatment. We performed a multicentric phase 2 trial combining 25 mg lenalidomide daily for 14 days per cycle with 8 cycles of CHOP21 in previously untreated AITL patients aged 60 to 80 years. The primary objective was the complete metabolic response (CMR) rate at the end of treatment. Seventy-eight of the 80 patients enrolled were included in the efficacy and safety analysis. CMR was achieved in 32 (41%; 95% confidence interval [CI], 30%-52.7%) patients, which was below the prespecified CMR rate of 55% defined as success in the study. The 2-year progression-free survival (PFS) was 42.1% (95% CI, 30.9%-52.8%), and the 2-year overall survival was 59.2% (95% CI, 47.3%-69.3%). The most common toxicities were hematologic and led to treatment discontinuation in 15% of patients. This large prospective and uniform series of AITL treatment data was used to perform an integrative analysis of clinical, pathologic, biologic, and molecular data. TET2, RHOA, DNMT3A, and IDH2 mutations were present in 78%, 54%, 32%, and 22% of patients, respectively. IDH2 mutations were associated with distinct pathologic and clinical features and DNMT3A was associated with shorter PFS. In conclusion, the combination of lenalidomide and CHOP did not improve the CMR in AITL patients. This trial clarified the clinical impact of recurrent mutations in AITL. This trial was registered at www.clincialtrials.gov as #NCT01553786
Recommended from our members
Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing
Most adults can skillfully avoid potential obstacles when acting in everyday cluttered scenes. We examined how gaze and hand movements are normally coordinated for obstacle avoidance and whether these are altered when binocular depth information is unavailable. Visual fixations and hand movement kinematics were simultaneously recorded, while 13 right-handed subjects reached-to-precision grasp a cylindrical household object presented alone or with a potential obstacle (wine glass) located to its left (thumb's grasp side), right or just behind it (both closer to the finger's grasp side) using binocular or monocular vision. Gaze and hand movement strategies differed significantly by view and obstacle location. With binocular vision, initial fixations were near the target's centre of mass (COM) around the time of hand movement onset, but usually shifted to end just above the thumb's grasp site at initial object contact, this mainly being made by the thumb, consistent with selecting this digit for guiding the grasp. This strategy was associated with faster binocular hand movements and improved end-point grip precision across all trials than with monocular viewing, during which subjects usually continued to fixate the target closer to its COM despite a similar prevalence of thumb-first contacts. While subjects looked directly at the obstacle at each location on a minority of trials and their overall fixations on the target were somewhat biased towards the grasp side nearest to it, these gaze behaviours were particularly marked on monocular vision-obstacle behind trials which also commonly ended in finger-first contact. Subjects avoided colliding with the wine glass under both views when on the right (finger side) of the workspace by producing slower and straighter reaches, with this and the behind obstacle location also resulting in 'safer' (i.e. narrower) peak grip apertures and longer deceleration times than when the goal object was alone or the obstacle was on its thumb side. But monocular reach paths were more variable and deceleration times were selectively prolonged on finger-side and behind obstacle trials, with this latter condition further resulting in selectively increased grip closure times and corrections. Binocular vision thus provided added advantages for collision avoidance, known to require intact dorsal cortical stream processing mechanisms, particularly when the target of the grasp and potential obstacle to it were fairly closely separated in depth. Different accounts of the altered monocular gaze behaviour converged on the conclusion that additional perceptual and/or attentional resources are likely engaged compared to when continuous binocular depth information is available. Implications for people lacking binocular stereopsis are briefly considered
Patents and Industrialisation. An Historical Overview of the British Case, 1624-1907
A Report to the Strategic Advisory Board on Intellectual Property Policy (SABIP), U
First- and second-order contributions to depth perception in anti-correlated random dot stereograms.
The binocular energy model of neural responses predicts that depth from binocular disparity might be perceived in the reversed direction when the contrast of dots presented to one eye is reversed. While reversed-depth has been found using anti-correlated random-dot stereograms (ACRDS) the findings are inconsistent across studies. The mixed findings may be accounted for by the presence of a gap between the target and surround, or as a result of overlap of dots around the vertical edges of the stimuli. To test this, we assessed whether (1) the gap size (0, 19.2 or 38.4 arc min) (2) the correlation of dots or (3) the border orientation (circular target, or horizontal or vertical edge) affected the perception of depth. Reversed-depth from ACRDS (circular no-gap condition) was seen by a minority of participants, but this effect reduced as the gap size increased. Depth was mostly perceived in the correct direction for ACRDS edge stimuli, with the effect increasing with the gap size. The inconsistency across conditions can be accounted for by the relative reliability of first- and second-order depth detection mechanisms, and the coarse spatial resolution of the latter
The Time Course of Segmentation and Cue-Selectivity in the Human Visual Cortex
Texture discontinuities are a fundamental cue by which the visual system segments objects from their background. The neural mechanisms supporting texture-based segmentation are therefore critical to visual perception and cognition. In the present experiment we employ an EEG source-imaging approach in order to study the time course of texture-based segmentation in the human brain. Visual Evoked Potentials were recorded to four types of stimuli in which periodic temporal modulation of a central 3° figure region could either support figure-ground segmentation, or have identical local texture modulations but not produce changes in global image segmentation. The image discontinuities were defined either by orientation or phase differences across image regions. Evoked responses to these four stimuli were analyzed both at the scalp and on the cortical surface in retinotopic and functional regions-of-interest (ROIs) defined separately using fMRI on a subject-by-subject basis. Texture segmentation (tsVEP: segmenting versus non-segmenting) and cue-specific (csVEP: orientation versus phase) responses exhibited distinctive patterns of activity. Alternations between uniform and segmented images produced highly asymmetric responses that were larger after transitions from the uniform to the segmented state. Texture modulations that signaled the appearance of a figure evoked a pattern of increased activity starting at ∼143 ms that was larger in V1 and LOC ROIs, relative to identical modulations that didn't signal figure-ground segmentation. This segmentation-related activity occurred after an initial response phase that did not depend on the global segmentation structure of the image. The two cue types evoked similar tsVEPs up to 230 ms when they differed in the V4 and LOC ROIs. The evolution of the response proceeded largely in the feed-forward direction, with only weak evidence for feedback-related activity
- …