50 research outputs found

    Comment on "New modes of halo excitations in the 6He nucleus"

    Get PDF
    We try to explain the differences in the 6He dipole strength function in refs. [1] and [2]. We perform the full basis calculation of the strength function with the same renormalized interaction as in [1] and show that the size of the basis, needed for converged calculations of the 6He continuum spectrum, is much larger than that for the discrete spectrum. The renormalized interaction of [1] therefore cannot be used for the continuum spectrum calculations with the same basis as for the ground state.Comment: 2 pages, 3 figure

    The Continuum Structure of the Borromean Halo Nucleus 11Li

    Get PDF
    We solve the Faddeev equations for 11Li (n+n+9Li) using hyperspherical coordinates and analytical expressions for distances much larger than the effective ranges of the interactions. The lowest resonances are found at 0.65 MeV (1/2+, 3/2+, 5/2+) and 0.89 MeV (3/2+, 3/2-) with widths of about 0.35 MeV. A number of higher-lying broader resonances are also obtained and related to the Efimov effect. The dipole strength function and the Coulomb dissociation cross section are also calculated. PACS numbers: 21.45.+v, 11.80.Jy, 21.60.GxComment: 10 pages, LaTeX, 3 postscript figures, psfig.st

    Three-body halos. V. Computations of continuum spectra for Borromean nuclei

    Get PDF
    We solve the coordinate space Faddeev equations in the continuum. We employ hyperspherical coordinates and provide analytical expressions allowing easy computation of the effective potentials at distances much larger than the ranges of the interactions where only s-waves in the different Jacobi coordinates couple. Realistic computations are carried out for the Borromean halo nuclei 6He (n+n+\alpha) for J\pi = 0+-, 1+-, 2+- and 11Li (n+n+9Li) for (1/2)+-, (3/2)+-, (5/2)+-. Ground state properties, strength functions, Coulomb dissociation cross sections, phase shifts, complex S-matrix poles are computed and compared to available experimental data. We find enhancements of the strength functions at low energies and a number of low-lying S-matrix poles.Comment: 35 pages, 14 figure

    Breakup Reactions of 11Li within a Three-Body Model

    Get PDF
    We use a three-body model to investigate breakup reactions of 11Li (n+n+9Li) on a light target. The interaction parameters are constrained by known properties of the two-body subsystems, the 11Li binding energy and fragmentation data. The remaining degrees of freedom are discussed. The projectile-target interactions are described by phenomenological optical potentials. The model predicts dependence on beam energy and target, differences between longitudinal and transverse momentum distributions and provides absolute values for all computed differential cross sections. We give an almost complete series of observables and compare with corresponding measurements. Remarkably good agreement is obtained. The relative neutron-9Li p-wave content is about 40%. A p-resonance, consistent with measurements at about 0.5 MeV of width about 0.4 MeV, seems to be necessary. The widths of the momentum distributions are insensitive to target and beam energy with a tendency to increase towards lower energies. The transverse momentum distributions are broader than the longitudinal due to the diffraction process. The absolute values of the cross sections follow the neutron-target cross sections and increase strongly for beam energies decreasing below 100 MeV/u.Comment: 19 pages, 14 figures, RevTeX, psfig.st

    The structure of the atomic helium trimers: Halos and Efimov states

    Get PDF
    The Faddeev equations for the atomic helium-trimer systems are solved numerically with high accuracy both for the most sophisticated realistic potentials available and for simple phenomenological potentials. An efficient numerical procedure is described. The large-distance asymptotic behavior, crucial for weakly bound three-body systems, is described almost analytically for arbitrary potentials. The Efimov effect is especially considered. The geometric structures of the bound states are quantitatively investigated. The accuracy of the schematic models and previous computations is comparable, i.e. within 20% for the spatially extended states and within 40% for the smaller ^4He-trimer ground state.Comment: 32 pages containing 7 figures and 6 table

    Computations of Three-Body Continuum Spectra

    Get PDF
    We formulate a method to solve the coordinate space Faddeev equations for positive energies. The method employs hyperspherical coordinates and analytical expressions for the effective potentials at large distances. Realistic computations of the parameters of the resonances and the strength functions are carried out for the Borromean halo nucleus 6He (n+n+alpha) for J = 0+, 0-, 1+, 1-, 2+,2-. PACS numbers: 21.45.+v, 11.80.Jy, 31.15.Ja, 21.60.GxComment: 10 pages, 3 postscript figures, LaTeX, epsf.sty, corrected misprints in the caption of Fig.

    Halos and related structures

    Full text link
    The halo structure originated in nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these structures, with an emphasis on how the structures evolve as more cluster components are added, and on the experimental situation concerning halo states in light nuclei.Comment: 27 pages, 3 figures, Contribution to Nobel Symposium 152 "Physics With Radioactive Beams

    Origin of three-body resonances

    Full text link
    We expose the relation between the properties of the three-body continuum states and their two-body subsystems. These properties refer to their bound and virtual states and resonances, all defined as poles of the SS-matrix. For one infinitely heavy core and two non-interacting light particles, the complex energies of the three-body poles are the sum of the two two-body complex pole-energies. These generic relations are modified by center-of-mass effects which alone can produce a Borromean system. We show how the three-body states evolve in 6^6He, 6^6Li, and 6^6Be when the nucleon-nucleon interaction is continuously switched on. The schematic model is able to reproduce the main properties in their spectra. Realistic calculations for these nuclei are shown in detail for comparison. The implications of a core with non-zero spin are investigated and illustrated for 17^{17}Ne (15^{15}O+p+p). Dimensionless units allow predictions for systems of different scales.Comment: 15 pages, 7 figure
    corecore