219 research outputs found

    Boltzmann equation simulation for a trapped Fermi gas of atoms

    Full text link
    The dynamics of an interacting Fermi gas of atoms at sufficiently high temperatures can be efficiently studied via a numerical simulation of the Boltzmann equation. In this work we describe in detail the setup we used recently to study the oscillations of two spin-polarised fermionic clouds in a trap. We focus here on the evaluation of interparticle interactions. We compare different ways of choosing the phase space coordinates of a pair of atoms after a successful collision and demonstrate that the exact microscopic setup has no influence on the macroscopic outcome

    Exact vortex nucleation and cooperative vortex tunneling in dilute BECs

    Full text link
    With the imminent advent of mesoscopic rotating BECs in the lowest Landau level (LLL) regime, we explore LLL vortex nucleation. An exact many-body analysis is presented in a weakly elliptical trap for up to 400 particles. Striking non-mean field features are exposed at filling factors >>1 . Eg near the critical rotation frequency pairs of energy levels approach each other with exponential accuracy. A physical interpretation is provided by requantising a mean field theory, where 1/N plays the role of Planck's constant, revealing two vortices cooperatively tunneling between classically degenerate energy minima. The tunnel splitting variation is described in terms of frequency, particle number and ellipticity.Comment: 4 pages,4 figure

    Counter-flow instability of a quantum mixture of two superfluids

    Full text link
    We study the instability of a mixture of two interacting counter-flowing superfluids. For a homogeneous system, we show that superfluid hydrodynamics leads to the existence of a dynamical instability at a critical value of the relative velocity vcrv_{cr}. When the interspecies coupling is small the critical value approaches the value vcr=c1+c2v_{cr}=c_1+c_2, given by the sum of the sound velocities of the two uncoupled superfluids, in agreement with the recent prediction of [1] based on Landau's argument. The crucial dependence of the critical velocity on the interspecies coupling is explicitly discussed. Our results agree with previous predictions for weakly interacting Bose-Bose mixtures and applies to Bose-Fermi superfluid mixtures as well. Results for the stability of transversally trapped mixtures are also presented.Comment: 5 pages, 2 figue

    Upaya Meningkatkan Kemampuan Memahami Bacaan Bahasa Jepang Tingkat Dasar Melalui Model Pembelajaran Cooperative Learning Teknik Script (Penelitian Tindakan Kelas Pada Mahasiswa Semester II Prodi Pendidikan Bahasa Jepang Unnes)

    Full text link
    The purpose of this classroom action research is to improve the quality of teaching and learning process for Dokkai Shokyu Kohan (basic level of reading comprehension) which was held at the Japanese Language Education Program, Semarang State University. This is because in the course there is the unequal distribution of activity and participation of students in following the learning process. To overcome these problems, the application of Script Cooperative Learning Techniques in Dokkai Shokyu Kohan's course regarded as the right solution. The application of this model of learning is more motivating the lecturer and students to interact actively in Dokkai Shokyu Kohan learning process. After going through two cycles, the positive results of the application this Technique Script is starting to look. The positive result is the improvement of the role of teachers and increasing the student activity and participation in lectures. In addition, the average value of student learning outcomes also increased

    Resonant Excitonic Optical Stark Effect In Gase

    Get PDF
    The time-resolved nonlinear transmission of bulk ε-GaSe has been studied in the femtosecond regime when resonantly exciting the material in the vicinity of the exciton at room temperature. Two regimes are evidenced. At early time delay, a blue shift of the exciton with no linewidth broadening can be related to optical Stark effect, while at longer time delay the usual exciton screening and band-gap renormalization due to real electronic transitions is observed. At resonance, a dependence of the Stark shift with the amplitude of the exciting field is obtained, as predicted by a simple "dressed- atom" model.55222307230

    Investigation of acceptor levels and hole scattering mechanisms in p-gallium selenide by means of transport measurements under pressure

    Full text link
    The effect of pressure on acceptor levels and hole scattering mechanisms in p-GaSe is investigated through Hall effect and resistivity measurements under quasi-hydrostatic conditions up to 4 GPa. The pressure dependence of the hole concentration is interpreted through a carrier statistics equation with a single (nitrogen) or double (tin) acceptor whose ionization energies decrease under pressure due to the dielectric constant increase. The pressure effect on the hole mobility is also accounted for by considering the pressure dependencies of both the phonon frequencies and the hole-phonon coupling constants involved in the scattering rates.Comment: 13 pages, Latex, 4 ps figures. to appear in High Pressure Research 69 (1997

    Shape oscillation of a rotating Bose-Einstein condensate

    Full text link
    We present a theoretical and experimental analysis of the transverse monopole mode of a fast rotating Bose-Einstein condensate. The condensate's rotation frequency is similar to the trapping frequency and the effective confinement is only ensured by a weak quartic potential. We show that the non-harmonic character of the potential has a clear influence on the mode frequency, thus making the monopole mode a precise tool for the investigation of the fast rotation regime

    Interferometric detection of a single vortex in a dilute Bose-Einstein condensate

    Full text link
    Using two radio frequency pulses separated in time we perform an amplitude division interference experiment on a rubidium Bose-Einstein condensate. The presence of a quantized vortex, which is nucleated by stirring the condensate with a laser beam, is revealed by a dislocation in the fringe pattern.Comment: 4 pages, 4 figure

    Investigation of conduction band structure, electron scattering mechanisms and phase transitions in indium selenide by means of transport measurements under pressure

    Full text link
    In this work we report on Hall effect, resistivity and thermopower measurements in n-type indium selenide at room temperature under either hydrostatic and quasi-hydrostatic pressure. Up to 40 kbar (= 4 GPa), the decrease of carrier concentration as the pressure increases is explained through the existence of a subsidiary minimum in the conduction band. This minimum shifts towards lower energies under pressure, with a pressure coefficient of about -105 meV/GPa, and its related impurity level traps electrons as it reaches the band gap and approaches the Fermi level. The pressure value at which the electron trapping starts is shown to depend on the electron concentration at ambient pressure and the dimensionality of the electron gas. At low pressures the electron mobility increases under pressure for both 3D and 2D electrons, the increase rate being higher for 2D electrons, which is shown to be coherent with previous scattering mechanisms models. The phase transition from the semiconductor layered phase to the metallic sodium cloride phase is observed as a drop in resistivity around 105 kbar, but above 40 kbar a sharp nonreversible increase of the carrier concentration is observed, which is attributed to the formation of donor defects as precursors of the phase transition.Comment: 18 pages, Latex, 10 postscript figure
    corecore