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An effect of nondissipative drag of a superfluid flow in a system of two Bose gases confined in
two parallel quasi-two-dimensional traps is studied. Using an approach based on introduction of
density and phase operators, we compute the drag current at zero and finite temperatures for arbi-
trary ratio of particle densities in the adjacent layers. We demonstrate that in a system of two
ring-shaped traps the «drag force» influences the drag trap in the same way as an external mag-
netic flux influences a superconducting ring. This allows one to use the drag effect to control per-
sistent current states in superfluids and opens up the possibility of implementing a Bose analog of
the superconducting Josephson flux qubit.
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1. Introduction

The existence of nondissipative supercurrents is a
common feature of superconducting and superfluid
systems. Among various applications of superconduc-
tivity, considerable attention has been given to the use
of superconducting circuits as very sensitive magne-
tometers (superconducting quantum interferometer
devices). At present the interest in such systems is re-
newed in view of the possibility of using supercon-
ducting circuits with weak links as elements of quan-
tum computers (Josephson qubits). In view of the
similarity between superfluids and superconductors,
one can expect that the former may also be used for
implementing qubits.

Supercurrent in superconductors is coupled to the
vector potential of electromagnetic fields. It allows
one to control persistent current states by external
fields. Obviously, there is no such a channel for con-
trol in uncharged superfluid Bose systems. In this pa-
per we study another possibility based on a non-
dissipative drag effect.

The drag in normal systems has been investigated
experimentally and theoretically by many authors

(see, for instance, reviews [1,2]). The main attention
was given to the study of bilayer electron systems in
semiconductor heterostructures. In such systems an
interlayer drag effect takes place. The effect is caused
by electron-electron scattering processes and it reveals
itself in the appearance of a drag voltage in one layer
when a normal current flows in the adjacent layer. If
the former layer is in a closed circuit, the drag voltage
induces a drag current flowing through the circuit.
The effect is accompanied by dissipation of energy and
takes place only at finite temperatures. Roughly, the
drag voltage increases by a T2 law (the deviation from
this law observed experimentally [3] is connected
with a phonon contribution to the interaction between
the carriers [4]).

In superfluid and superconducting systems another
kind of drag may take place. This drag is non-
dissipative and is connected with a redistribution of a
supercurrent between two superfluid (superconduct-
ing) components. In contrast with the drag in a nor-
mal state, the superfluid drag has the largest value at
zero temperatures and decreases with increasing tem-
perature. The existence of nondissipative drag in
superfluid systems was pointed out for the first time in
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the paper by Andreev and Bashkin [5]. In that paper a
three-velocity hydrodynamic model of a 3He–4He
mixture was developed. It has been shown that the
superfluid behavior of such systems can be described
by including a «drag» term in the free energy. This
term is proportional to the scalar product of superfluid
velocities of two components times the difference be-
tween the effective and the bare masses of 3He atoms.
The nondissipative drag effect in superconductors has
been studied in the paper by Duan and Yip [6]. The
authors of [6] argue that the value of drag can be ob-
tained from the energy of zero-point fluctuations.
It was shown that this energy contains a «drag» term
analogous to one obtained in [5] in the hydrodynamic
approach. The theory of the nondissipative drag in
a bilayer system of charged bosons was developed
by Tanatar and Das [7] and by Terentjev and Shev-
chenko [8].

The existence of nondissipative drag in a system of
two one-dimensional wires in a persistent current state
was predicted by Rojo and Mahan [9]. It was also
shown by Duan [10] that nondissipative drag is re-
sponsible for an emergence of an interlayer Hall volt-
age in bilayer electron systems in the fractional quan-
tum Hall regime.

On the basis of previous studies one can consider
nondissipative drag as a fundamental property of sys-
tems with macroscopic quantum coherence. For the
system of uncharged bosons this effect is especially im-
portant, since the «drag force» plays a role similar to
the role of the vector potential of magnetic field in su-
perconductors. It opens up new possibilities for ob-
serving the effects caused by phase coherence in such
systems. One of the goals of this paper is to point out
this analogy. In particular, we show that the non-
dissipative drag effect allows one to realize a superpo-
sition of flux states in a superfluid ring with a
Josephson weak link.

Great attention is now being paid to the study of
ultracold alkali-metal vapors confined in magnetic
and optical traps, where Bose-Einstein condensation
of atoms has been observed [11]. Advances in technol-
ogy allow one to manipulate the parameters of such
systems and make ultracold atomic gases a unique ob-
ject for the study of various quantum-mechanical phe-
nomena.

In this paper we study the effect of nondissipative
drag in a system of two quasi-two-dimensional atomic
Bose gases confined in two parallel traps. To describe
such a situation we take into account that the densi-
ties of atoms in the drive and drag layers can be un-
equal. In previous studies [7,8] only the case of two
layers with equal densities of the particles was consid-
ered. Another important factor is the temperature.

In atomic gases it is of the order of or higher than the
energy of intralayer interactions. Previously, the de-
pendence of nondissipative drag on the temperature
was treated only qualitatively [6,8]. Here we study
the temperature dependence quantitatively. We also
evaluate the value of the drag for concrete mechanisms
of interlayer interaction in atomic Bose gases.

2. Model and approach

The geometry of a Bose cloud can be modified sig-
nificantly by varying the configuration of external
fields forming the trap. When the confining potential
is strongly anisotropic and the temperature and the
chemical potential are smaller than the separation be-
tween the energy levels of spatial quantization in one
direction, the Bose gas can be treated as a two-dimen-
sional one. Recently, low-dimensional atomic gases
have been realized experimentally [12].

Bose clouds of a ring shape can be created by using
toroidal traps. A configuration of two toroidal traps
situated one above the other is convenient for the
study of the drag effect. It follows from the discussion
below that if one excites a circulating superflow in
one trap it inevitably leads to a redistribution of this
superflow between the two traps, and superfluid cur-
rents appear in both rings.

The main features of the drag effect can be under-
stood from the study of a system of two uniform
two-dimensional Bose gases situated in parallel layers.
The Hamiltonian of the system can be presented in the
form

H E N El
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is the kinetic energy,

E d rd r Vll l l ll l�
� �

�
�

� �� � � � ��int 2 2 � ( ) � ( ) ( ) � ( )	 	 	r r r r r � ( )	l r
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is the energy of the intralayer (l l� �) and interlayer
(l l
 �) interaction, and N d rl l l� � �2 � ( ) � ( )	 	r r . Here
�	 is the Bose field operator, l is the layer index, r is
the two-dimensional radius vector lying in the layer,
and �l are the chemical potentials. To be more spe-
cific, we consider the case of point interaction between
the atoms: V V11 22( ) ( ) ( )r r r� � �� , V V12 21( ) ( )r r� �
� �� �( )r with �  0 and | |� �� � . Assuming the barrier
between the two traps is quite high, we neglect the
tunneling between the layers.

Drag of superfluid current in bilayer Bose systems

Fizika Nizkikh Temperatur, 2004, v. 30, No. 10 1029



For further analysis it is convenient to use the den-
sity and phase operator approach (see, for instance,
[13,14]). The approach is based on the following rep-
resentation for the Bose field operators

� ( ) exp [ ( ) � ( )] � ( )	l l l l li ir r r r� � � � �� � , (4)

� ( ) � ( ) exp [ ( ) � ( )]	l l l l li i� � � � � � �r r r r� � , (5)

where ��l and �� l are the density and phase fluctuation
operators, �l l l� � ��� ( ) � ( )	 	r r is the c-number term of
the density operator (one can see that it is just the
density of atoms in the layer l), � l ( )r is the c-number
term of the phase operator (in the approach consid-
ered, the inclusion of this term in the phase operator

allows one to describe states with nonzero average
superflows).

Substituting Eqs. (4), (5) into Hamiltonian (1)
and expanding it in series in powers of ��l and ��� l , we
arrive at the expression
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is linear in the phase and density fluctuation operators, and the term
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is quadratic in the ��� l and ��l operators.
If the chemical potentials are fixed, the Hamil-

tonian H0 is minimized under the conditions

�
2

2
32

0
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 !� �� ��l l ( )r 0. (11)

Fulfillment of Eqs. (10), (11) means that the H1
term in the Hamiltonian (6) vanishes. One should
note that, as follows from Eq. (10), the densities of
the components are independent of the coordinates
only when the phase gradients remain space inde-
pendent as well.

The quadratic part of the Hamiltonian determines
the spectrum of elementary excitations. Hereafter we
will neglect the higher order terms in the Hamiltonian
(6). These terms describe the scattering of the quasi-
particles and they can be omitted if the temperature
is much smaller than the critical temperature
(T /mc " �

2� ).

3. Drag current

The current density operator

� [( � ) � � � ]jl l l l l
i
m

� � � �� ��

2
	 	 	 	 , (12)

rewritten in terms of the phase and density operators,
has the form

� � [ ( � )] �jl l l l l l lm
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�
� � � � . (13)

Expanding (13) in powers of the density and phase
fluctuation operators and neglecting the terms of or-
der higher than quadratic, we obtain the following
expression for the mean value of the current density:

jl l l l l l lm m
� �� � � �� � � � �� �
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� � �

2
( [ � ]� � � ). (14)

To derive Eq. (14) we take into account that
�� � � � � �� �l l� 0.

To compute the averages in (14) we rewrite the
quadratic part of the Hamiltonian in terms of the ope-
rators of creation and annihilation of the elementary
excitations. In the absence of the interlayer interac-
tion (�� � 0) this can be done by the substitution
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where the operators bl
� , bl satisfy the Bose commuta-

tion relations. Here S is the area of the system,
ºk k / m� �

2 2 2 is the spectrum of free atoms, and
Elk k k l� �º (º )2�� is the spectrum of elementary
excitations at �� � 0 and �� �l 0.

In the case considered, the substitution (15), (16)
reduces the Hamiltonian (9) to the form
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The Hamiltonian (17) contains terms nondiagonal in
the Bose creation and annihilation operator and it can
be diagonalized using the u–v transformation
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(see [15]) which reduces the Hamiltonian (17) to the
form
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It is convenient to present the u–v coefficients and
the energies of the elementary excitations as series in
powers of gk. The u–v coefficients read as
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The spectra of the elementary excitations are found to be
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One can see that the small parameter of the expan-
sion is gk/| ( ) ( )|E E1 2 1k k� �� . The last inequality
takes place for all k, if � � � � � �� �� �max ( , ) | |1 2 1 2 .
Since in most cases of interest the interlayer interac-
tion is much smaller than the intralayer one, for the
bilayer systems with different densities in the adjacent
layers one can neglect the O( )gk

3 and higher order
terms in Eqs. (22), (23), (26), (27).

Using representation (15), (16), we obtain from
(14) the following expression for the current density:

j k k k
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� ( ) ( ) . (28)

Substituting Eq. (20) with coefficients (22), (23)
into Eq. (28), computing the averages and expanding

the result in powers of the phase gradients we obtain
the following expression for the currents:
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Equations (29), (30) are given in the approximation
linear in �� l . Here the terms of higher order in the
phase gradients can be neglected if the phase gradi-
ents �� l are much smaller than the inverse healing
lengths + ��l lm /� "1

� (this corresponds to velocities
of the superflow much smaller than the critical ones
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and �dr with an accuracy up to the gk
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Here N E /Tlk lk� � �[exp ( ) ]1 1 is the Bose distribution function. One can see that in the absence of the
interlayer interaction (gk � 0) the value of �dr is equal to zero, and Eq. (31) for � sl is reduced to the
well-known expression for the density of the superfluid component at finite temperatures. If the interlayer inter-
action is switched on, the value of �dr becomes nonzero. Then, even in the absence of the phase gradient in the
drag layer the superfluid current in this layer emerges as a response on the phase gradient in the drive layer.

Equations (31), (32) were derived under assumption of � �1 2
 (and, consequently, E Ek k1 2
 ). The case
� �1 2. required more rigorous consideration since in this case the mixing of the modes is strong even for a weak
interlayer interaction. One can find that the expressions (31), (32) remain finite at � �1 2/ :

lim lim
º

� � � �
� � ,

1 2 1 2
1 2

2
1 1

2/ /
� �

-

-
�

-� �s s k
k

k

k k

kS

N

E S

g

E
k k

2

2

3

3

N

E
E

N

E

k

k

k
k

k-
�

-

-

%

&

'
'

(

)

*
*

, (33)

lim
º

� �
�

1 2

1
4

1 2 2
2
3

2

3
3

3

/
� � �

-

-
�

-�dr S

g

E
N E

N

E
E

Nk k

k

k k
k

k
k

k

k -

%

&

'
'

(

)

*
*Ek

3
, (34)

where Ek is the energy of the elementary excitations
at � �1 2� and �� � 0. Using the exact expressions for
the spectra and the u–v coefficients we obtain that for
the case of two layers with equal densities and in the
weak interlayer interaction limit � ���� the quantities
� sl and �dr are determined just Eqs. (33), (34). It al-

lows us to conclude that Eqs. (31), (32) are valid for
an arbitrary ratio between the densities.

Let us first consider the case of zero temperature.
We define the drag current as the current in the drag
layer (e.g., layer 1) in the absence of the phase gradi-
ent in this layer. At T � 0 the drag current is equal to
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The factor Cdr is an increasing function of the ratio
� �2 1/ (at � �2 1 0/ / the factor Cdr approaches zero,
at � �2 1� it is equal to 1/12, and it approaches 1/4
at � �2 1/ / 1). Thus, the drag current increases un-
der increasing the density of the particles in the drive
layer.

At finite temperatures the drag current decreases.
At small T one can use the long-wave approximation
for the spectra E k1 2( ) in the temperature dependent
part of Eq. (32) and evaluate this part analytically.
This yields the following relation:

j T j
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But, actually, this approximation is valid only at
very low temperatures. The results of numerical eval-
uation of Eq. (32) are shown in Fig. 1. This figure
demonstrates that at T " 2 1�� the temperature de-
crease of the drag current is much slower. Based on
the results presented in Fig. 1, we also conclude that
the temperature reduction of the drag current be-
comes smaller with increasing density of the particles
in the drive layer.

In a Bose cloud confined in a trap the density is
nonuniform. This results in a modification of the spec-
trum of elementary excitations. We may argue that
this modification reveals itself in only minor changes
of the value of the drag. One can find that the main
contribution to the sum in Eq. (32) comes from the
excitations with wave vectors of the order of or larger
than the inverse healing lengths +l

�1. In systems with
the healing lengths much smaller than the linear size
of the Bose clouds the spectrum at q � +1

1– , +2
1� is well

described by the quasi-uniform approximation. There-
fore, in such systems the local drag current is given by
the same equations (29)–(32) as in the uniform case,
with the only modification that the densities �1, �2 in
these formulas should be understood as functions of r.
In particular, we predict that for two Bose gases con-
fined in harmonic traps having the same Tho-
mas–Fermi radius (and this radius is much larger than
the average healing length), the spatial distribution of
the superflow in the drag trap at T � 0 will replicate
(with a drag factor) the spatial distribution of the
superflow in the drive trap. At finite temperatures one
can expect a reduction of the drag factor near the edge
of the Bose cloud, where the density is low.

One can ask to what extent the two-dimensionality
of the system studied may influence the results ob-
tained. It is known that in 2D systems fluctuations of
the phase of the order parameter are large and at non-
zero temperature the off-diagonal one-particle density
matrix � ��� ( ) � ( )	 	r 0 goes to zero in the limit | |r / 1.
This implies the absence of long-range order in the sys-
tems at T 
 0. But since the asymptotic behavior of the
density matrix is described by a power-law depend-
ence on r (not an exponential one), at temperatures
lower than the critical one (the Kosterlitz–Thouless
transition temperature) the superfluid density be-
comes nonzero. The drag of the superflow between
two 2D Bose gases, considered in this paper, is con-
nected with a finite value of the superfluid density,
and that is why it decreases with increasing tempera-
ture. The density and phase operator approach, used
in this paper, is not based on the existence of the
Bose–Einstein condensate. Moreover, the power-law
asymptotic behavior of the density matrix can be
easily derived in this approach with inclusion of the
thermal excitations described by the Hamiltonian H2.
But at the same level of approximation we do not find
any crucial influence of the two-dimensionality on the
drag phenomena.

4. The value of the drag in atomic Bose gases

Let us present some estimates for the value of the
drag in atomic Bose gases. For simplicity we specify
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the case of � � �1 2� � and T � 0. It is convenient to
introduce the drag factor f /dr dr dr� �� � �( ), which
gives the ratio between the currents in the drag and in
the drive traps in the absence of the phase gradient in
the drag trap. Taking into account that � �dr �� , we
use the approximate expression f /dr dr� � � for further
analysis.

The value of fdr depends on the interaction parame-
ters � and ��. The parameter � can be expressed through
the dimensionless effective «scattering length» ~a

�
0

�
2 2 2

�

m
a~. (38)

In a quasi-two-dimensional trap the effective scatter-
ing length is connected with the 3D scattering length
a and the oscillator length in the z direction
l mz z� � / 5 by the relation ~a a/lz� , which is
valid for a lz�� [16]. Let us introduce the interlayer
dimensionless effective «scattering length» ~a� that is
connected with the interlayer interaction parameter ��
by the relation

�
0

� � �
2 2 2

�

m
a~ . (39)

Substituting Eqs. (38), (39) into Eq. (34), we obtain
the drag factor in the form

f
a
adr �
�1

12
2 2

0
(~ )

~ . (40)

Equation (40) is valid for | ~ | ~a a� �� , but one can expect
that it is approximately correct at | ~ | ~a a� . (we empha-
size that in any case the stability condition requires
that the inequality | ~ | ~a a� � be satisfied).

To evaluate the value of | ~ |a� we should specify a
mechanism of the interlayer interaction. Let us first
consider the interaction that corresponds to the «tail»
of the van der Waals potential:

V r
C

r d
12

6
2 2 3

vdW( )
( )

� �
�

. (41)

Here C6 is the van der Waals constant and d is the
interlayer distance. The Fourier component of the po-
tential (41) is

V
12

2
12

6
2

2
2

4

vdW vdW e( ) ( ) ( )k d rV r
C

d
k K kdi� � �� kr 0

,

(42)

where K x2( ) is the modified Bessel function of the
second kind. Taking into account that the van der
Waals interaction is a short-ranged one, we can eval-
uate �� as � 0� � / � �V12 6

40 2vdW( ) ( )k C / d . It yields
| ~ | ( )a / C m/ d� .vdW 0 2 46

2 4
� .

This result can be obtained in a more rigorous way.
Our approach is easily generalized for the case of an

arbitrary central force interlayer interaction potential.
To do this we should redefine the quantity gk as

g k
E Ek k

k k
� V12

1 2

1 2
( )º

� �
(43)

and substitute this definition (instead of Eq. (19))
into the formulas for � sl and �dr obtained in the pre-
vious Section. Using Eq. (34), one can present the
drag factor (for T � 0 and � �1 2� ) in the form

f
m

a
dx

x q x

x /dr �
�

1

�
1

16 2 12

2

4
0

2
12 0

2

2 5 20

0

� ~
[ ( )]

( )

V (44)

with q a0 8 2� 0�~. Substituting Eq. (42) into
Eq. (44), we find

f
C m

d a
F dqdr vdW�

%

&
'

(

)
*

1
12 4

1
2

6
2 4

2

0
�

~ ( )
0

. (45)

Here the function

F x
x

dy
y

y
K xy

/vdW( )
( )

( )�
�

1

�
3
4 1

4

0

6

2 5 2 2
2 (46)

describes the dependence of the drag factor on the
density �. Comparing Eqs. (46) and (40) we obtain
the following expression for the modules of the effec-
tive interlayer scattering length

| ~ | ( )a
C m

d
F dq� �vdW vdW

0
2 4

6
2 4 0

�

. (47)

The dependence of the factor FvdW on the parame-
ter dq0 is shown in Fig. 2. One can see from this fig-
ure that at dq0 1�� (which corresponds to the low
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density limit) the factor FvdW in Eq. (47) is close
to unity, and we arrive at the expression for | ~ |a�vdW
given above.

Due to the short-range nature of the van der Waals
interaction the interlayer effective scattering length
decreases quickly under increasing of d. Therefore, the
interlayer distance d should be rather small to achieve
an observable value of the drag. Using a typical value
of C6 (C6

573 10. 6 � erg6cm6) and taking d . 10 nm,
m � 87 a.u. (Rb), we evaluate | ~ |a� . �

vdW 10 1.
The quantities lz and a can be controlled in experi-

ments. The first of these is controlled by changing the
profile of the confining potential in the z direction,
and the latter, by tuning the magnetic field to the
value close to the Feshbach resonance field [17–19].
Near this resonance the scattering length changes sign,
and a situation with rather small 3D scattering length
a (much smaller than the value of lz , which, in turn,
has to be smaller than d/2) can be realized. Using this
possibility, one can tune the quantity ~a close to the
value of | ~ |a�vdW and obtain the drag factor
fdr . 6 �7 10 3.

Off resonance the typical values of the 3D scatter-
ing length lie in the interval 3–5 nm and for l d/z � 2
and d . 10 nm the estimate ~a a/lz� is not applicable.
In the ultra-2D limit (l /az �� 1) the interaction pa-
rameter can be evaluated by using the formula [20]

�
0

�
�

4 12

2

�

m a| ( )|
.

ln

For typical densities � � 108–1010 2cm� it yields
~ .a � 0 2–0.4, and the drag factor fdr . (2—3 10 3) 6 � .

At d � 100 nm the drag caused by the van der
Waals interaction becomes negligibly small. But in
the last case the dipole–dipole interaction may give an
essential contribution to the drag. Let us consider the
situation where the dipole moments of the atoms are
aligned in a direction perpendicular to the layers.
Then the interaction potential has the form

V r D
r d

r d

d d
/12

2
2 2

2 2 5 2

2� �
�

�
( )

( )
, (48)

where D is the dipole moment. The Fourier compo-
nent of the potential (48) reads as

V12
22d d kdk D k� �� �( ) 0 e . (49)

Substituting Eq. (49) into Eq. (44), we obtain

f
D m

d a
F dqd ddr �

%

&
'
'

(

)
*
* �

1
12

1
2

2

2

2

0
�

~ ( )
0

, (50)

where

F x x dy
y

y
d d

xy
�

1
��

�
�( )

( ) /
3

1

2

0

4

2

2
5 2

e . (51)

One can see that Eq. (50) is reduced to Eq. (40) un-
der the definition

| ~ | ( )� �� �a
D m

d
F dqd d d d

2

2 02�

0
. (52)

The dependence F dqd d� ( )0 is also shown in Fig. 2.
In contrast to with the previous case the value of ~� �ad d
approaches zero in the low density limit. But at
dq0 01 . , which corresponds to � 0 � �10 8 22 2d / a( ~),
one can neglect the dependence of fdr on the density
and put the factor Fd d� . 0 2. . For the estimates
given below we assume that the condition dq0 01 . is
fulfilled.

For the magnetic dipole–dipole interaction D is the
magnetic dipole moment of the atoms. The magnetic
dipoles can be aligned in the same direction if a con-
stant magnetic field is applied to the system. Taking
d � 100 nm, D B� � (the Bohr magneton), and m =
= 87 a.u., we obtain | ~ |� . 6�

�ad d 3 10 4. In the case when
~a is tuned to the value | ~ |� �ad d , one can achieve the drag
factor fdr . 6 �2 10 5.

For Bose atoms with large magnetic dipole mo-
ments this value can be much larger. A good candidate
atom is Cr (D B� 6� ). The possibility of realizing a Cr
Bose–Einstein condensate is discussed in [21]. For m =
= 52 a.u., D B� 6� , and d � 100 nm we evaluate
| ~ |� . 6�

�ad d 6 10 3, and, consequently, the maximum
drag factor fdr . 6 �4 10 4.

5. The «drag force» as an analog of the vector
potential

In Sec. 3 we compute the drag current directly. The
same results can be obtained from an analysis of the
dependence of the free energy of the system on the
phase gradients. The free energy of the system can be
found from the common thermodynamic relation

F H E T
T

� � � � �
%

&
''

(

)
**

�

�
�

�

�
���

�
0 1zero ln exp

( )

, k

k

7 # $

7E .

(53)

Here the quantity H0 given by Eq. (7) is the classical
energy of the system, and

E kzero � ���
�

1
2

[ ( ) º ]
,

E7
7 # $

k
k

(54)

is the energy of the zero-point fluctuations.
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Substituting the spectra (26), (27) into Eq. (53)
and expanding the final expression in powers of the
phase gradients, we find the following expression for
the free energy:

F F d r
m s s� � �� � �� ��0

2
2

1 1
2

2 2
2

2
�

[ ( ) ( )� �

� �� � �� ��dr higher order terms( ) ]1 2
2 , (55)

where F0 does not depend on the phase gradients, and
the quantities � sl , �dr are determined by the ex-
pressions (31), (32). One can see that the answer
(29)—(32) obtained in Sec. 3 by another method can
also be found from Eq. (55) using the relation

jl
lS

F
�

-
- ��

1
� ( )

. (56)

The relation (55) is more instructive in the sense
that it demonstrates an analogy between the drag ef-
fect in superfluids and the exciting of a supercurrent
by an external magnetic field in superconductors. To
illustrate this analogy let us consider two ring-shaped
traps and fix the phase gradient in the drive trap
(trap 2 in the notation used below). Then the free en-
ergy as a function of the phase gradient in the drag
trap (trap 1) can be presented in the form

F
w

mR s� � �const dr
0

�
�

2

1
2~ ( )8 8 , (57)

where R is the radius of the ring, w is its width,
~� � �s s1 1� � dr ,

8 � ���
1
2 10

d

C

l (58)

(here C is a contour around the ring) is the winding
number for the phase �1, and

8dr
dr� ���

�

� 0~
s

C

d
1

2
1
2

l (59)

is the winding number for the phase �2 times the drag
factor. In deriving (57) we, for simplicity, neglect
the dependence of the densities on the coordinate in-
side the traps.

Since the value of 8 must be an integer, the mini-
mum of the free energy at | |8dr � 1 2/ is reached for
8 � 0. In this case the phase gradient in the drag trap
is equal to zero, and the superfluid current in the drag
trap flows in the same direction as in the drive trap. If
| |8dr  1 2/ the free energy reaches its minimum at
nonzero 8, and a phase gradient is induced in the drag
trap. Then, together with the drag current, a counter-
flow current appears in the drag trap (depending on
the value of 8dr the total current in this trap can be

parallel or antiparallel to the current in the drag
trap). Just the same situation takes place in a super-
conducting ring with nonzero magnetic flux inside the
ring. Thus, in two-ring Bose systems the quantity 8dr
plays the same role as an external magnetic flux (mea-
sured in units of flux quanta) in superconducting cir-
cuits.

To realize this situation experimentally one should
create a circulating superflow in the drive trap. It can
be done by elliptic rotating deformation of this trap.
The rotation can be switched off when a superflow has
been created. The value of the drag current can be
found from measurement of the angular momentum of
the drag trap. At present a number methods for mea-
suring this quantity have been realized experimentally
[22–25]. The methods are based on the study of the
dynamics of collective excitations, on the investiga-
tion of interference phenomena under hyperfine state
transitions, and on the observation of the dynamics of
expansion of the Bose cloud.

To extend the analogy with superconductors, let us
consider the case where a drag trap of ring geometry
contains a Josephson weak link. Then the free energy
as a function of the phase shift 9� across the link
reads as

F E
w

mRJ s� � � �
�

�%

&
'

(

)
*const drcos ( ) ~9

9
8

0
�

0
�

2

1

2

2
,

(60)

where EJ is the Josephson energy. At E EJ J c �( )
� �

2
1 2w / Rms

~ ( )� 0 and | | , , ...8dr � 1 2 3 2/ / the de-
pendence F( )9� has two degenerate minima. If
E / EJ J c( ) � ��1 1 these minima are very shallow,
and one can expect an observation of a superposition
of two quantum states with different phase shifts
(and with the superfluid currents flowing in opposite
directions) will be entangled. This is the same regime
that is required for implementing the superconducting
Josephson flux (persistent current) qubit [26]. While
in alkali-metal Bose gases the drag factor is rather
small, and even under the most favorable condi-
tions the maximum value that can be reached is
of order 10 2� —10 3� (see Sec. 4), the case | |8dr . 1 2/
can be realized in ring-shape traps of large radius
(102—103 �m).

In closing, we would like to mention another sys-
tem in which the effects described in this paper may
take place, namely, excitonic or electron–hole Bose
liquids in electron bilayers. In these systems elect-
ron–hole pairs with components belonging to adjacent
layers may form a superfluid state. For the first time
the effect was predicted in [27,28], and recently it was
confirmed experimentally [29]. The superfluid drag
effect may emerge in two parallel bilayers (the four-
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layer system). In the four-layer system the intralayer
(in the same bilayer) and interlayer (between bi-
layers) interactions are of the same order: both of
them are determined by the dipole–dipole mechanism.
In such a case the dipole moment of the pair is large.
Therefore, one can expect that nondissipative drag in
these systems will be rather strong.
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